Changes in v1.0.0
- Add
auto_iter
to textmodel_seededlda()
and
textmodel_lda()
to stop Gibbs sampling automatically before
max_iter
is reached.
- Add
batch_size
to textmodel_seededlda()
and textmodel_lda()
to enable the distributed LDA algorithm
for parallel computing.
Changes in v0.9.0
- Add the gamma parameter to
textmodel_seededlda()
and
textmodel_lda()
for sequential classification.
- Add
textmodel_seqlda()
as as short cut for
textmodel_lda(gamma = 0.5)
.
- Improve the calculation of weights for seed words.
- Add the
regularize
argument to
divergence()
for the regularized topic divergence
measure.
Changes in v0.8.4
- Fix for deprecation in Matrix 1.5-4.
Changes in v0.8.3
- Add
data_corpus_moviereviews
to the package to reduce
dependency.
Changes in v0.8.2
- Add
min_prob
and select
to
topics()
for greater flexibility
- Change the divergence measure from Kullback-Leibler to
Jensen-Shannon.
- Add
weighted
, min_size
,
select
to divergence()
for regularized topic
divergence scores.
Changes in v0.8.1
- Change
textmodel_seededlda()
to set positive integer
values to residual
.
- Fix a bug in
textmodel_seededlda()
that ignores n-grams
when concatenator
is not “_“.
- Change
topics()
to return document names.
- Add
divergence()
to optimize the number of topics or
the seed words (#26).
Changes in v0.8.0
- Add the
model
argument to textmodel_lda()
to replace predict()
.
Changes in v0.7.0
- Change the
textmodel_seededlda
object to save
dictionary and related settings (#18)
Changes in v0.6.0
- Add
predict()
to identify topics of unseen documents
(#9)
- Allow selecting seed words based on their frequencies using
dfm_trim()
in textmodel_seededlda()
via
...
(#8)
Changes in v0.5.1
- Change
topics()
to return factor with NA for empty
documents
- Fix a bug in initializing LDA that leads to incorrect phi (#4 and
#6)
Changes in v0.5
- Implement original LDA estimator using the LDAGibbs++ library