Package ‘monomvn’

August 21, 2023

Type Package

Title Estimation for MVN and Student-t Data with Monotone Missingness

Version 1.9-18

Date 2023-08-20

Author Robert B. Gramacy <rbg@vt.edu>, with Fortran contributions from Cleve Moler (dpotri/LINPACK) as updated by Berwin A. Turlach (qpge2/quadprog)

Maintainer Robert B. Gramacy <rbg@vt.edu>

Description Estimation of multivariate normal (MVN) and student-t data of arbitrary dimension where the pattern of missing data is monotone. See Pantaleo and Gramacy (2010) <arXiv:0907.2135>. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.

Depends R (>= 2.14.0), pls, lars, MASS

Imports quadprog, mvtnorm

License LGPL

URL https://bobby.gramacy.com/r_packages/monomvn/

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-08-21 07:32:32 UTC
R topics documented:

- monomvn-package ... 2
- lasso ... 3
- lasso.s3 ... 8
- bmonomvn ... 10
- cement ... 16
- default.QP .. 17
- metrics ... 20
- monomvn ... 22
- monomvn.s3 .. 27
- monomvn.solve.QP .. 29
- plot.monomvn ... 30
- randmvn ... 31
- regress ... 33
- returns ... 36
- rmono ... 37
- rwish .. 38

Index 40

monomvn-package Estimation for Multivariate Normal and Student-t Data with Monotone Missingness

Description

Estimation of multivariate normal and student-t data of arbitrary dimension where the pattern of missing data is monotone. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), the Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.

Details

For a fuller overview including a complete list of functions, demos and vignettes, please use help(package="monomvn").

Author(s)

Robert B. Gramacy <rgb@vt.edu>

Maintainer: Robert B. Gramacy <rgb@vt.edu>
References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

`monomvn`, the now defunct `norm` package, `mvnmle`

blasso

Bayesian Lasso/NG, Horseshoe, and Ridge Regression

Description

Inference for ordinary least squares, lasso/NG, horseshoe and ridge regression models by (Gibbs) sampling from the Bayesian posterior distribution, augmented with Reversible Jump for model selection

Usage

```r
bhs(X, y, T=1000, thin=NULL, RJ=TRUE, M=NULL, beta=NULL,
    lambda2=1, s2=var(y-mean(y)), mprior=0, ab=NULL,
    theta=0, rao.s2=TRUE, icept=TRUE, normalize=TRUE, verb=1)

bridge(X, y, T = 1000, thin = NULL, RJ = TRUE, M = NULL,
    beta = NULL, lambda2 = 1, s2 = var(y-mean(y)), mprior = 0,
    rd = NULL, ab = NULL, theta=0, rao.s2 = TRUE,  icept = TRUE,
    normalize = TRUE, verb = 1)

blasso(X, y, T = 1000, thin = NULL, RJ = TRUE, M = NULL,
    beta = NULL, lambda2 = 1, s2 = var(y-mean(y)),
    case = c("default", "ridge", "hs", "ng"), mprior = 0, rd = NULL,
    ab = NULL, theta=0, rao.s2 = TRUE,  icept = TRUE,
    normalize = TRUE, verb = 1)
```

Arguments

- `X`: data.frame, matrix, or vector of inputs `X`
- `y`: vector of output responses `y` of length equal to the leading dimension (rows) of `X`, i.e., `length(y) == nrow(X)`
- `T`: total number of MCMC samples to be collected
- `thin`: number of MCMC samples to skip before a sample is collected (via thinning). If `NULL` (default), then `thin` is determined based on the regression model implied by `RJ`, `lambda2`, and `ncol(X)`; and also on the errors model implied by `theta` and `nrow(X)`
RJ if TRUE then model selection on the columns of the design matrix (and thus the parameter beta in the model) is performed by Reversible Jump (RJ) MCMC. The initial model is specified by the beta input, described below, and the maximal number of covariates in the model is specified by M

M the maximal number of allowed covariates (columns of X) in the model. If input lambda2 > 0 then any M <= ncol(X) is allowed. Otherwise it must be that M <= min(ncol(X), length(y)-1), which is default value when a NULL argument is given

beta initial setting of the regression coefficients. Any zero-components will imply that the corresponding covariate (column of X) is not in the initial model. When input RJ = FALSE (no RJ) and lambda2 > 0 (use lasso) then no components are allowed to be exactly zero. The default setting is therefore contextual; see below for details

lambda2 square of the initial lasso penalty parameter. If zero, then least squares regressions are used

s2 initial variance parameter

case specifies if ridge regression, the Normal-Gamma, or the horseshoe prior should be done instead of the lasso; only meaningful when lambda2 > 0

mprior prior on the number of non-zero regression coefficients (and therefore covariates) m in the model. The default (mprior = 0) encodes the uniform prior on 0 <= m <= M. A scalar value 0 < mprior < 1 implies a Binomial prior Bin(m|n=M,p=mprior). A 2-vector mprior=c(g,h) of positive values g and h represents gives Bin(m|n=M,p) prior where p=Beta(g,h)

rd =c(r, delta), the alpha (shape) parameter and beta (rate) parameter to the gamma distribution prior G(r,delta) for the lambda^2 parameter under the lasso model; or, the alpha (shape) parameter and beta (scale) parameter to the inverse-gamma distribution IG(r/2, delta/2) prior for the lambda^2 parameter under the ridge regression model. A default of NULL generates appropriate non-informative values depending on the nature of the regression. Specifying rd=FALSE causes lambda2 values to be fixed at their starting value, i.e., not sampled. See the details below for information on the special settings for ridge regression

ab =c(a, b), the alpha (shape) parameter and beta (scale) parameter for the inverse-gamma distribution prior IG(a,b) for the variance parameter s2. A default of NULL generates appropriate non-informative values depending on the nature of the regression

theta the rate parameter (> 0) to the exponential prior on the degrees of freedom parameter nu under a model with Student-t errors implemented by a scale-mixture prior. The default setting of theta = 0 turns off this prior, defaulting to a normal errors prior

rao.s2 indicates whether Rao-Blackwellized samples for sigma^2 should be used (default TRUE); see below for more details

icept if TRUE, an implicit intercept term is fit in the model, otherwise the the intercept is zero; default is TRUE

normalize if TRUE, each variable is standardized to have unit L2-norm, otherwise it is left alone; default is TRUE

verb verbosity level; currently only verb = 0 and verb = 1 are supported
Details

The Bayesian lasso model and Gibbs Sampling algorithm is described in detail in Park & Casella (2008). The algorithm implemented by this function is identical to that described therein, with the exception of an added “option” to use a Rao-Blackwellized sample of σ^2 (with β integrated out) for improved mixing, and the model selections by RJ described below. When input argument $\lambda_2 = 0$ is supplied, the model is a simple hierarchical linear model where (β, σ^2) is given a Jeffrey’s prior.

Specifying $\text{RJ} = \text{TRUE}$ causes Bayesian model selection and averaging to commence for choosing which of the columns of the design matrix X (and thus parameters β) should be included in the model. The zero-components of the β input specify which columns are in the initial model, and M specifies the maximal number of columns.

The RJ mechanism implemented here for the Bayesian lasso model selection differs from the one described by Hans (2009), which is based on an idea from Geweke (1996). Those methods require departing from the Park & Casella (2008) latent-variable model and requires sampling from each conditional $\beta_i | \beta_{(-i)}$, for all i, since a mixture prior with a point-mass at zero is placed on each β_i. Our implementation here requires no such special prior and retains the joint sampling from the full β vector of non-zero entries, which we believe yields better mixing in the Markov chain. RJ proposals to increase/decrease the number of non-zero entries does proceed component-wise, but the acceptance rates are high due to marginalized between-model moves (Troughton & Godsill, 1997).

When the lasso prior or RJ is used, the automatic thinning level (unless $\text{thin} \neq \text{NULL}$) is determined by the number of columns of X since this many latent variables are introduced.

Bayesian ridge regression is implemented as a special case via the bridge function. This essentially calls blasso with case = "ridge". A default setting of $rd = c(0, 0)$ is implied by $rd = \text{NULL}$, giving the Jefferay’s prior for the penalty parameter λ^2 unless $\text{ncol}(X) \geq \text{length}(y)$ in which case the proper specification of $rd = c(5, 10)$ is used instead.

The Normal–Gamma prior (Griffin & Brown, 2009) is implemented as an extension to the Bayesian lasso with case = "ng". Many thanks to James Scott for providing the code needed to extend the method(s) to use the horseshoe prior (Carvalho, Polson, Scott, 2010).

When $\theta > 0$ then the Student-t errors via scale mixtures (and thereby extra latent variables omega2) of Geweke (1993) is applied as an extension to the Bayesian lasso/ridge model. If Student-t errors are used the automatic thinning level is augmented (unless $\text{thin} \neq \text{NULL}$) by the number of rows in X since this many latent variables are introduced.

Value

blasso returns an object of class "blasso", which is a list containing a copy of all of the input arguments as well as of the components listed below.

- `call`: a copy of the function call as used.
- `mu`: a vector of T samples of the (un-penalized) “intercept” parameter.
- `beta`: a $T \times \text{ncol}(X)$ matrix of T samples from the (penalized) regression coefficients.
- `m`: the number of non-zero entries in each vector of T samples of β.
- `s2`: a vector of T samples of the variance parameter.
- `lambda2`: a vector of T samples of the penalty parameter.
gamma

da vector of T with the gamma parameter when case = "ng"

tau2i

$a T \times ncol(X)$ matrix of T samples from the (latent) inverse diagonal of the prior covariance matrix for beta, obtained for Lasso regressions

omega2

$a T \times nrow(X)$ matrix of T samples from the (latent) diagonal of the covariance matrix of the response providing a scale-mixture implementation of Student-t errors with degrees of freedom ν when active (input $\theta > 0$)

nu

a vector of T samples of the degrees of freedom parameter to the Student-t errors mode when active (input $\theta > 0$)

pi

a vector of T samples of the Binomial proportion p that was given a Beta prior, as described above for the 2-vector version of the mprior input

lpost

the log posterior probability of each (saved) sample of the joint parameters

llik

the log likelihood of each (saved) sample of the parameters

llik.norm

the log likelihood of each (saved) sample of the parameters under the Normal errors model when sampling under the Student-t model; i.e., it is not present unless $\theta > 0$

Note

Whenever $ncol(X) >= nrow(X)$ it must be that either $RJ = TRUE$ with $M <= nrow(X)-1$ (the default) or that the lasso is turned on with $\lambda2 > 0$. Otherwise the regression problem is ill-posed.

Since the starting values are considered to be first sample (of T), the total number of (new) samples obtained by Gibbs Sampling will be $T-1$

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

blasso

https://bobby.gramacy.com/r_packages/monomvn/

See Also

`lm`, `lars` in the `lars` package, `regress, lm.ridge` in the `MASS` package

Examples

```r
## following the lars diabetes example
data(diabetes)
attach(diabetes)

## Ordinary Least Squares regression
reg.ols <- regress(x, y)

## Lasso regression
reg.las <- regress(x, y, method="lasso")

## Bayesian Lasso regression
reg.blas <- blasso(x, y)

## summarize the beta (regression coefficients) estimates
plot(reg.blas, burnin=200)
points(drop(reg.las$b), col=2, pch=20)
points(drop(reg.ols$b), col=3, pch=18)
legend("topleft", c("blasso-map", "lasso", "lsr"),
       col=c(2,2,3), pch=c(21,20,18))

## plot the size of different models visited
plot(reg.blas, burnin=200, which="m")

## get the summary
s <- summary(reg.blas, burnin=200)

## calculate the probability that each beta coef != zero
s$bn0

## summarize s2
plot(reg.blas, burnin=200, which="s2")
s$s2

## summarize lambda2
plot(reg.blas, burnin=200, which="lambda2")
s$lambda2

## Not run:
## fit with Student-t errors
## (~400-times slower due to automatic thinning level)
regt.blas <- blasso(x, y, theta=0.1)
```
plotting some information about nu, and quantiles
plot(regt.blas, "nu", burnin=200)
quantile(regt.blas$nu[-(1:200)], c(0.05, 0.95))

Bayes Factor shows strong evidence for Student-t model
mean(exp(regt.blas$llik[-(1:200)] - regt.blas$llik.norm[-(1:200)]))

End(Not run)

clean up
detach(diabetes)

blasso.s3

Summarizing Bayesian Lasso Output

Description

Summarizing, printing, and plotting the contents of a "blasso"-class object containing samples from the posterior distribution of a Bayesian lasso model

Usage

```r
## S3 method for class 'blasso'
print(x, ...)
## S3 method for class 'blasso'
summary(object, burnin = 0, ...)
## S3 method for class 'blasso'
plot(x, which=c("coef", "s2", "lambda2", "gamma", "tau2i", "omega2", "nu", "m", "pi"), subset = NULL, burnin = 0, ...)
## S3 method for class 'summary.blasso'
print(x, ...)
```

Arguments

- **object**
 - a "blasso"-class object that must be named object for the generic methods `summary.blasso`
- **x**
 - a "blasso"-class object that must be named x for the generic printing and plotting methods `print.summary.blasso` and `plot.blasso`
- **subset**
 - a vector of indicies that can be used to specify the a subset of the columns of `tau2i` or `omega2` that are plotted as boxplots in order to reduce clutter
- **burnin**
 - number of burn-in rounds to discard before reporting summaries and making plots. Must be non-negative and less than x$T
- **which**
 - indicates the parameter whose characteristics should be plotted; does not apply to the `summary`
- **...**
 - passed to `print.blasso`, or `plot.default`
Details

print.blasso prints the call followed by a brief summary of the MCMC run and a suggestion to try the summary and plot commands.

plot.blasso uses an appropriate plot command on the list entries of the "blasso"-class object thus visually summarizing the samples from the posterior distribution of each parameter in the model depending on the which argument supplied.

summary.blasso uses the summary command on the list entries of the "blasso"-class object thus summarizing the samples from the posterior distribution of each parameter in the model.

print.summary.monomvn calls print.blasso on the object and then prints the result of summary.blasso

Value

summary.blasso returns a "summary.blasso"-class object, which is a list containing (a subset of) the items below. The other functions do not return values.

B a copy of the input argument thin
T total number of MCMC samples to be collected from x$T
thin number of MCMC samples to skip before a sample is collected (via thinning) from x$T
coef a joint summary of x$mu and the columns of x$beta, the regression coefficients
s2 a summary of x$s2, the variance parameter
lambda2 a summary of x$lambda2, the penalty parameter, when lasso or ridge regression is active
lambda2 a summary of x$gamma, when the NG extensions to the lasso are used
tau2i a summary of the columns of the latent x$tau2i parameters when lasso is active
omega2 a summary of the columns of the latent x$omega2 parameters when Student-t errors are active
nu a summary of x$nu, the degrees of freedom parameter, when the Student-t model is active
bn0 the estimated posterior probability that the individual components of the regression coefficients beta is nonzero
m a summary the model order x$m: the number of non-zero regression coefficients beta
pi the estimated Binomial proportion in the prior for the model order when 2-vector input is provided for mprior

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/
See Also

blasso

bmonomvn
Bayesian Estimation for Multivariate Normal Data with Monotone Missingness

Description

Bayesian estimation via sampling from the posterior distribution of the of the mean and covariance matrix of multivariate normal (MVN) distributed data with a monotone missingness pattern, via Gibbs Sampling. Through the use of parsimonious/shrinkage regressions (lasso/NG & ridge), where standard regressions fail, this function can handle an (almost) arbitrary amount of missing data

Usage

```
bmonomvn(y, pre = TRUE, p = 0.9, B = 100, T = 200, thin = 1,  
economy = FALSE, method = c("lasso", "ridge", "lsr", "factor",  
"hs", "ng"), RJ = c("p", "bpsn", "none"), capm = TRUE,  
start = NULL, mprior = 0, rd = NULL, theta = 0, rao.s2 = TRUE,  
QP = NULL, verb = 1, trace = FALSE)
```

Arguments

- `y` data matrix were each row is interpreted as a random sample from a MVN distribution with missing values indicated by NA
- `pre` logical indicating whether pre-processing of the `y` is to be performed. This sorts the columns so that the number of NAs is non-decreasing with the column index
- `p` when performing regressions, p is the proportion of the number of columns to rows in the design matrix before an alternative regression (lasso, ridge, or RJ) is performed as if least-squares regression has “failed”. Least-squares regression is known to fail when the number of columns equals the number of rows, hence a default of $p = 0.9 \leq 1$. Alternatively, setting $p = 0$ forces a parsimonious method to be used for every regression. Intermediate settings of p allow the user to control when least-squares regressions stop and the parsimonious ones start; When `method = "factor"` the p argument represents an integer (positive) number of initial columns of y to treat as known factors
- `B` number of Burn-In MCMC sampling rounds, during which samples are discarded
- `T` total number of MCMC sampling rounds to take place after burn-in, during which samples are saved
- `thin` multiplicative thinning in the MCMC. Each Bayesian (lasso) regression will discard thin*M MCMC rounds, where M is the number of columns in its design matrix, before a sample is saved as a draw from the posterior distribution; Likewise if theta != 0 a further thin*N, for N responses will be discarded
economy indicates whether memory should be economized at the expense of speed. When TRUE the individual Bayesian (lasso) regressions are cleaned between uses so that only one of them has a large footprint at any time during sampling from the Markov chain. When FALSE (default) all regressions are pre-allocated and the full memory footprint is realized at the outset, saving dynamic allocations.

method indicates the Bayesian parsimonious regression specification to be used, choosing between the lasso (default) of Park & Casella, the NG extension, the horseshoe, a ridge regression special case, and least-squares. The "factor" method treats the first p columns of y as known factors.

RJ indicates the Reversible Jump strategy to be employed. The default argument of "p" method uses RJ whenever a parsimonious regression is used; "bpsn" only uses RJ for regressions with p >= n, and "none" never uses RJ.

capm when TRUE this argument indicates that the number of components of β should not exceed n, the number of response variables in a particular regression.

start a list depicting starting values for the parameters that are use to initialize the Markov chain. Usually this will be a "monomvn"-class object depicting maximum likelihood estimates output from the monomvn function. The relevant fields are the mean vector μ, covariance matrix Σ, monotone ordering \o (for sanity checking with input y), component vector $ncomp$ and penalty parameter vector λ; see note below.

mprior prior on the number of non-zero regression coefficients (and therefore covariates) m in the model. The default (mprior = 0) encodes the uniform prior on 0 < m < M. A scalar value 0 <= mprior <= 1 implies a Binomial prior Bin(m|n=M,p=mprior). A 2-vector mprior=c(g,h) of positive values g and h represents gives Bin(m|n=M,p) prior where p~Beta(g,h).

rd =$c(r,\delta)$; a 2-vector of prior parameters for λ^2 which depends on the regression method. When method = "lasso" then the components are the α (shape) and β (rate) parameters to the a gamma distribution $\Gamma(r,\delta)$; when method = "ridge" the components are the α (shape) and β (scale) parameters to an inverse-gamma distribution $\text{IG}(r/2,\delta/2)$

theta the rate parameter (>0) to the exponential prior on the degrees of freedom parameter ν for each regression model implementing Student-t errors (for each column of Y marginally) by a scale-mixture prior. See blasso for more details. The default setting of theta = 0 turns off this prior, defaulting to a normal errors prior. A negative setting triggers a pooling of the degrees of freedom parameter across all columns of Y. I.e., Y is modeled as multivariate-t. In this case abs(theta) is used as the prior parameterization.

rao.s2 indicates whether to Rao-Blackwellized samples for σ^2 should be used (default TRUE); see the details section of blasso for more information.

QP if non-NULL this argument should either be TRUE, a positive integer, or contain a list specifying a Quadratic Program to solve as a function of the samples of $\mu = dvec$ and $\Sigma = Dmat$ in the notation of solve.QP; see default.QP for a default specification that is used when QP = TRUE or a positive integer is is given; more details are below.

verb verbosity level; currently only verb = 0 and verb = 1 are supported.

trace if TRUE then samples from all parameters are saved to files in the CWD, and then read back into the "monomvn"-class object upon return.
Details

If pre = TRUE then bmonomvn first re-arranges the columns of y into nondecreasing order with respect to the number of missing (NA) entries. Then (at least) the first column should be completely observed.

Samples from the posterior distribution of the MVN mean vector and covariance matrix are obtained sampling from the posterior distribution of Bayesian regression models. The methodology for converting these to samples from the mean vector and covariance matrix is outlined in the monomvn documentation, detailing a similarly structured maximum likelihood approach. Also see the references below.

Whenever the regression model is ill–posed (i.e., when there are more covariates than responses, or a “big p small n” problem) then Bayesian lasso or ridge regressions – possibly augmented with Reversible Jump (RJ) for model selection – are used instead. See the Park & Casella reference below, and the blasso documentation. To guarantee each regression is well posed the combination setting of method="lsr" and RJ="none" is not allowed. As in monomvn the p argument can be used to turn on lasso or ridge regressions (possibly with RJ) at other times. The exception is the “factor” method which always involves an OLS regression on (a subset of) the first p columns of y.

Samples from a function of samples of mu and Sigma can be obtained by specifying a Quadratic program via the argument QP. The idea is to allow for the calculation of the distribution of minimum variance and mean–variance portfolios, although the interface is quite general. See default.QP for more details, as default.QP(ncol(y)) is used when the argument QP = TRUE is given. When a positive integer is given, then the first QP columns of y are treated as factors by using default.QP(ncol(y) - QP) instead. The result is that the corresponding components of (samples of) mu and rows/cols of S are not factored into the specification of the resulting Quadratic Program.

Value

bmonomvn returns an object of class "monomvn", which is a list containing the inputs above and a subset of the components below.

call a copy of the function call as used
mu estimated mean vector with columns corresponding to the columns of y
S estimated covariance matrix with rows and columns corresponding to the columns of y
mu.var estimated variance of the mean vector with columns corresponding to the columns of y
mu.cov estimated covariance matrix of the mean vector with columns corresponding to the columns of y
S.var estimated variance of the individual components of the covariance matrix with columns and rows corresponding to the columns of y
mu.map estimated maximum a' posteriori (MAP) of the mean vector with columns corresponding to the columns of y
S.map estimated MAP of the individual components of the covariance matrix with columns and rows corresponding to the columns of y
\textbf{S.nz} posterior probability that the individual entries of the covariance matrix are non-zero
\textbf{Si.nz} posterior probability that the individual entries of the inverse of the covariance matrix are non-zero
\textbf{nu} when $\theta < 0$ this field provides a trace of the pooled ν parameter to the multivariate-t distribution
\textbf{lpost.map} log posterior probability of the MAP estimate
\textbf{which.map} gives the time index of the sample corresponding to the MAP estimate
\textbf{llik} a trace of the log likelihood of the data
\textbf{llik.norm} a trace of the log likelihood under the Normal errors model when sampling under the Student-t model; i.e., it is not present unless $\theta > 0$. Used for calculating Bayes Factors
\textbf{na} when \texttt{pre = TRUE} this is a vector containing number of \texttt{NA} entries in each column of y
\textbf{o} when \texttt{pre = TRUE} this is a vector containing the index of each column in the sorting of the columns of y obtained by $o \leftarrow \text{order}(\text{na})$
\textbf{method} method of regression used on each column, or "bcomplete" indicating that no regression was used
\textbf{thin} the (actual) number of thinning rounds used for the regression (\texttt{method}) in each column
\textbf{lambda2} records the mean λ^2 value found in the trace of the Bayesian Lasso regressions. Zero-values result when the column corresponds to a complete case or an ordinary least squares regression (these would be \texttt{NA} entries from \texttt{monomvn})
\textbf{ncomp} records the mean number of components (columns of the design matrix) used in the regression model for each column of y. If input $\texttt{RJ = FALSE}$ then this simply corresponds to the monotone ordering (these would correspond to the \texttt{NA} entries from \texttt{monomvn}). When $\texttt{RJ = TRUE}$ the monotone ordering is an upper bound (on each entry)
\textbf{trace} if input \texttt{trace = TRUE} then this field contains traces of the samples of μ in the field \$mu and of Σ in the field \$S, and of all regression parameters for each of the $m = \text{length}(\text{mu})$ columns in the field \$reg. This \$reg field is a stripped-down "\texttt{blasso}"-class object so that the methods of that object may be used for analysis. If data augmentation is required to complete the monotone missingness pattern, then samples from these entries of Y are contained in \$DA where the column names indicate the i-j entry of Y sampled; see the \texttt{R} output below
\textbf{R} gives a matrix version of the missingness pattern used: 0-entries mean observed; 1-entries indicate missing values conforming to a monotone pattern; 2-entries indicate missing values that require data augmentation to complete a monotone missingness pattern
\textbf{B} from inputs: number of Burn-In MCMC sampling rounds, during which samples are discarded
\textbf{T} from inputs: total number of MCMC sampling rounds to take place after burn-in, during which samples are saved
\(r \) from inputs: alpha (shape) parameter to the gamma distribution prior for the lasso parameter lambda

\(\delta \) from inputs: beta (rate) parameter to the gamma distribution prior for the lasso parameter lambda

\(QP \) if a valid (non--FALSE or NULL) \(QP \) argument is given, then this field contains the specification of a Quadratic Program in the form of a list with entries including \$dvec, \$Amat, \$b0, and \$meq, similar to the usage in \texttt{solve.QP}, and some others; see \texttt{default.QP} for more details

\(W \) when input \(QP = \text{TRUE} \) is given, then this field contains a \(T \times ncol(y) \) matrix of samples from the posterior distribution of the solution to the Quadratic Program, which can be visualized via \texttt{plot.monomvn} using the argument \texttt{which = "QP"}

Note

Whenever the \texttt{bmonomvn} algorithm requires a regression where \(p \geq n \), i.e., if any of the columns in the \(y \) matrix have fewer non--NA elements than the number of columns with more non--NA elements, then it is helpful to employ both lasso/ridge and the RJ method.

It is important that any starting values provided in the \texttt{start} be compatible with the regression model specified by inputs RJ and method. Any incompatibilities will result with a warning that (alternative) default action was taken and may result in an undesired (possibly inferior) model being fit.

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

\texttt{blasso, monomvn, default.QP, em.norm} in the now defunct \texttt{norm} and \texttt{mvnmle} packages, and \texttt{returns}

Examples

```r
## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3
data(cement.miss)
out <- bmonomvn(cement.miss)
out
out$mu
```
A bigger example, comparing the various parsimonious methods

generate N=100 samples from a 10-d random MVN
\[\text{xmuS} \leftarrow \text{randmvn}(100, 20) \]

randomly impose monotone missingness
\[\text{xmiss} \leftarrow \text{rmono(xmuS$x)} \]

using least squares only when necessary,
\[\text{obl} \leftarrow \text{bmonomvn(xmiss)} \]

look at the posterior variability
\[\text{par(mfrow=c(1,2))} \]
\[\text{plot(obl)} \]
\[\text{plot(obl, "S")} \]

compare to maximum likelihood
\[\text{Ellik.norm(oblmu, oblS, xmuS$mu, xmuS$S)} \]
\[\text{oml} \leftarrow \text{monomvn(xmiss, method="lasso")} \]
\[\text{Ellik.norm(omlmu, omlS, xmuS$mu, xmuS$S)} \]

a min-variance portfolio allocation example

get the returns data, and use 20 random cols
\[\text{data(returns)} \]
\[\text{train} \leftarrow \text{returns[,sample(1:ncol(returns), 20)]} \]

missingness pattern requires DA; also gather samples from the solution to a QP
\[\text{obl.da} \leftarrow \text{bmonomvn(train, p=0, QP=TRUE)} \]

plot the QP weights distribution
\[\text{plot(obl.da, "QP", xaxis="index")} \]

get ML solution: will warn about monotone violations
\[\text{suppressWarnings(oml.da} \leftarrow \text{monomvn(train, method="lasso")}) \]

add mean and MLE comparison, requires the quadprog library for the solve.QP function
\[\text{add.pe.QP(obl.da, oml.da)} \]

now consider adding in the market as a factor
\[\text{data(market)} \]
\[\text{mtrain} \leftarrow \text{cbind(market, train)} \]
fit the model using only factor regressions
obl.daf <- bmonomvn(mtrain, method="factor", p=1, QP=1)
plot(obl.daf, "QP", xaxis="index", main="using only factors")
suppressWarnings(oml.daf <- monomvn(mtrain, method="factor"))
add.pe.QP(obl.daf, oml.daf)

a Bayes/MLE comparison using least squares sparingly
##
fit Bayesian and classical lasso
p <- 0.25
obls <- bmonomvn(xmiss, p=p)
Ellik.norm(obls$mu, obls$S, xmuS$mu, xmuS$S)
omls <- monomvn(xmiss, p=p, method="lasso")
Ellik.norm(omls$mu, omls$S, xmuS$mu, xmuS$S)

compare to ridge regression
obrs <- bmonomvn(xmiss, p=p, method="ridge")
Ellik.norm(obrs$mu, obrs$S, xmuS$mu, xmuS$S)
omrs <- monomvn(xmiss, p=p, method="ridge")
Ellik.norm(omrs$mu, omrs$S, xmuS$mu, xmuS$S)

cement

Hald's Cement Data

Description

Heat evolved in setting of cement, as a function of its chemical composition.

Usage

data(cement)
data(cement.miss)

Format

A data.frame with 13 observations on the following 5 variables.

- **x1** percentage weight in clinkers of 3CaO.Al2O3
- **x2** percentage weight in clinkers of 3CaO.SiO2
- **x3** percentage weight in clinkers of 4CaO.Al2O3.Fe2O3
- **x4** percentage weight in clinkers of 2CaO.SiO2
- **y** heat evolved (calories/gram)
Details

cement.miss is taken from an example in Little & Rubin’s book on *Statistical Analysis with Missing Data* (2002), pp.~154, for demonstrating estimation of multivariate means and variances when the missing data pattern is monotone. These are indicated by NA in cement.miss. See the examples section of `monomvn` for a re-working of the example from the textbook.

Source

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

`monomvn` – Several other R packages also include this data set

Examples

data(cement)
`lm(y~x1+x2+x3+x4,data=cement)`

default.QP(m, dmu = FALSE, mu.constr = NULL)

Description

This function generates a default “minimum variance” Quadratic Program in order to obtain samples of the solution under the posterior for parameters \(\mu \) and \(\Sigma \) obtained via `bmonomvn`. The list generated as output has entries similar to the inputs of `solve.QP` from the `quadprog` package.

Usage

default.QP(m, dmu = FALSE, mu.constr = NULL)
Arguments

- **m**: the dimension of the solution space; usually `ncol(y)` or equivalently `length(mu)`, `ncol(S)` and `nrow(S)` in the usage of `bmonomvn`.
- **dmu**: a logical indicating whether `dvec` should be replaced with samples of `µ`; see details below.
- **mu.constr**: a vector indicating linear constraints on the samples of `µ` to be included in the default constraint set. See details below; the default of `NULL` indicates none.

Details

When `bmonomvn(y, QP=TRUE)` is called, this function is used to generate a default Quadratic Program that samples from the argument `w` such that

$$\min_{w} w^\top \Sigma w,$$

subject to the constraints that all $0 \leq w_i \leq 1$, for $i = 1, \ldots, m$,

$$\sum_{i=1}^{m} w_i = 1,$$

and where Σ is sampled from its posterior distribution conditional on the data y. Alternatively, this function can be used as a skeleton to for adaptation to more general Quadratic Programs by adjusting the list that is returned, as described in the “value” section below.

Non-default settings of the arguments `dmu` and `mu.constr` augment the default Quadratic Program, described above, in two standard ways. Specifying `dvec = TRUE` causes the program objective to change to

$$\min_{w} -w^\top \mu + \frac{1}{2} w^\top \Sigma w,$$

with the same constraints as above. Setting `mu.constr = 1`, say, would augment the constraints to include

$$\mu^\top w \geq 1,$$

for samples of `µ` from the posterior. Setting `mu.constr = c(1,2)` would augment the constraints still further with

$$-\mu^\top w \geq -2,$$

i.e., with alternating sign on the linear part, so that each sample of $\mu^\top w$ must lie in the interval $[1,2]$. So whereas `dmu = TRUE` allows the `mu` samples to enter the objective in a standard way, `mu.constr (!= NULL)` allows it to enter the constraints.

The accompanying function `monomvn.solve.QP` can act as an interface between the constructed (default) QP object, and estimates of the covariance matrix Σ and mean vector μ, that is identical to the one used on the posterior-sample version implemented in `bmonomvn`. The example below, and those in the documentation for `bmonomvn`, illustrate how this feature may be used to extract mean and MLE solutions to the constructed Quadratic Program.
Value

This function returns a list that can be interpreted as specifying the following arguments to the `solve.QP` function in the `quadprog` package. See `solve.QP` for more information of the general specification of these arguments. In what follows we simply document the defaults provided by `default.QP`. Note that the Dmat argument is not, specified as `bmonomvn` will use samples from S (from the posterior) instead

$m \quad \text{length}(dvec), \text{etc.}$

$dvec \quad \text{a zero-vector rep}(0, m), \text{or a one-vector rep}(1, m) \text{ when } dmu = \text{TRUE as the real }$
$dvec \text{ that will be used by solve.QP will then be } dvec \times \mu$

$dmu \quad \text{a copy of the } dmu \text{ input argument}$

$Amat \quad \text{a matrix describing a linear transformation which, together with } b0 \text{ and meq,}$
$\text{describe the constraint that the components of the sampled solution(s), } w, \text{ must}$
$\text{be positive and sum to one}$

$b0 \quad \text{a vector containing the (RHS of) in/equalities described by the these constraints}$

$meq \quad \text{an integer scalar indicating that the first } meq \text{ constraints described by } Amat \text{ and}$
$b0 \text{ are equality constraints; the rest are } \geq$

$mu.constr \quad \text{a vector whose length is one greater than the input argument of the same name,}$
$\text{providing bmonomvn with the number }$

$mu.constr[1] = \text{length}(mu.constr[-1])$

$\text{and location } mu.constr[-1] \text{ of the columns of } Amat \text{ which require multiplication}$
$\text{by samples of } \mu$

The QP object that is returned from `bmonomvn` will have the following additional field

$o \quad \text{an integer vector of length } m \text{ indicating the ordering of the rows of } Amat, \text{ and}$
$\text{thus the rows of solutions } W \text{ that was used in the monotone factorization of the}$
$\text{likelihood. This field appears only after } bmonomvn \text{ returns a } QP \text{ object checked}$
$\text{by the internal function check.QP}$

Author(s)

Robert B. Gramacy <rbg@vt.edu>

See Also

`bmonomvn` and `solve.QP` in the `quadprog` package, `monomvn.solve.QP`

Examples

```r
## generate N=100 samples from a 10-d random MVN
## and randomly impose monotone missingness
xmuS <- randmvn(100, 20)
xmiss <- rmono(xmuS$x)

## set up the minimum-variance (default) Quadratic Program
## and sample from the posterior of the solution space
qp1 <- default.QP(ncol(xmiss))
```
obl1 <- bmonomvn(xmiss, QP=qp1)
bm1 <- monomvn.solve.QP(obl1$S, qp1) ## calculate mean
bm1er <- monomvn.solve.QP(obl1$S + obl1$mu.cov, qp1) ## use estimation risk
oml1 <- monomvn(xmiss)
mm1 <- monomvn.solve.QP(oml1$S, qp1) ## calculate MLE

now obtain samples from the solution space of the
mean-variance QP
qp2 <- default.QP(ncol(xmiss), dmu=TRUE)
obl2 <- bmonomvn(xmiss, QP=qp2)
bm2 <- monomvn.solve.QP(obl2$S, qp2, obl2$mu) ## calculate mean
bm2er <- monomvn.solve.QP(obl2$S + obl2$mu.cov, qp2, obl2$mu) ## use estimation risk
oml2 <- monomvn(xmiss)
mm2 <- monomvn.solve.QP(oml2$S, qp2, oml2$mu) ## calculate MLE

now obtain samples from minimum variance solutions
where the mean weighted (samples) are constrained to be
greater one
qp3 <- default.QP(ncol(xmiss), mu.constr=1)
obl3 <- bmonomvn(xmiss, QP=qp3)
bm3 <- monomvn.solve.QP(obl3$S, qp3, obl3$mu) ## calculate mean
bm3er <- monomvn.solve.QP(obl3$S + obl3$mu.cov, qp3, obl3$mu) ## use estimation risk
oml3 <- monomvn(xmiss)
mm3 <- monomvn.solve.QP(oml3$S, qp3, oml3$mu) ## calculate MLE

plot a comparison
par(mfrow=c(3,1))
plot(obl1, which="QP", xaxis="index", main="Minimum Variance")
points(bm1er, col=4, pch=17, cex=1.5) ## add estimation risk
points(bm1, col=3, pch=18, cex=1.5) ## add mean
points(mm1, col=5, pch=16, cex=1.5) ## add MLE
legend("topleft", c("MAP", "posterior mean", "ER", "MLE"), col=2:5,
pch=c(21,18,17,16), cex=1.5)
plot(obl2, which="QP", xaxis="index", main="Mean Variance")
points(bm2er, col=4, pch=17, cex=1.5) ## add estimation risk
points(bm2, col=3, pch=18, cex=1.5) ## add mean
points(mm2, col=5, pch=16, cex=1.5) ## add MLE
plot(obl3, which="QP", xaxis="index", main="Minimum Variance, mean >= 1")
points(bm3er, col=4, pch=17, cex=1.5) ## add estimation risk
points(bm3, col=3, pch=18, cex=1.5) ## add mean
points(mm3, col=5, pch=16, cex=1.5) ## add MLE

for a further comparison of samples of the QP solution
w under Bayesian and non-Bayesian monomvn, see the
examples in the bmonomvn help file

| metrics | RMSE, Expected Log Likelihood and KL Divergence Between Two Multivariate Normal Distributions |
Description

These functions calculate the root-mean-squared-error, the expected log likelihood, and Kullback-Leibler (KL) divergence (a.k.a. distance), between two multivariate normal (MVN) distributions described by their mean vector and covariance matrix.

Usage

\[
\text{rmse.mvS}(\mu_1, S_1, \mu_2, S_2) \\
\text{Ellik.norm}(\mu_1, S_1, \mu_2, S_2, \text{quiet}=\text{FALSE}) \\
\text{kl.norm}(\mu_1, S_1, \mu_2, S_2, \text{quiet}=\text{FALSE}, \text{symm}=\text{FALSE})
\]

Arguments

- \(\mu_1\): mean vector of first (estimated) MVN
- \(S_1\): covariance matrix of first (estimated) MVN
- \(\mu_2\): mean vector of second (true, baseline, or comparator) MVN
- \(S_2\): covariance matrix of second (true, baseline, or comparator) MVN
- \(\text{quiet}\): when \(\text{FALSE}\) (default)
- \(\text{symm}\): when \(\text{TRUE}\) a symmetrized version of the KL divergence is used; see the note below

Details

The root-mean-squared-error is calculated between the entries of the mean vectors, and the upper-triangular part of the covariance matrices (including the diagonal).

The KL divergence is given by the formula:

\[
D_{\text{KL}}(N_1 \parallel N_2) = \frac{1}{2} \left(\log \left(\frac{|\Sigma_1|}{|\Sigma_2|} \right) + \text{tr} \left(\Sigma_1^{-1} \Sigma_2 \right) + (\mu_1 - \mu_2)^\top \Sigma_1^{-1} (\mu_1 - \mu_2) - N \right)
\]

where \(N\) is \(\text{length}(\mu_1)\), and must agree with the dimensions of the other parameters. Note that the parameterization used involves swapped arguments compared to some other references, e.g., as provided by Wikipedia. See note below.

The expected log likelihood can be formulated in terms of the KL divergence. That is, the expected log likelihood of data simulated from the normal distribution with parameters \(\mu_2\) and \(S_2\) under the estimated normal with parameters \(\mu_1\) and \(S_1\) is given by

\[
-\frac{1}{2} \ln \{(2\pi e)^N |\Sigma_2|\} - D_{\text{KL}}(N_1 \parallel N_2).
\]

Value

In the case of the expected log likelihood the result is a real number. The RMSE is a positive real number. The KL divergence method returns a positive real number depicting the distance between the two normal distributions.
Note

The KL-divergence is not symmetric. Therefore
\[\text{kl.norm}(\mu_1, S_1, \mu_2, S_2) \neq \text{kl.norm}(\mu_2, S_2, \mu_1, S_1). \]

But a symmetric metric can be constructed from
\[0.5 \times (\text{kl.norm}(\mu_1, S_1, \mu_2, S_2) + \text{kl.norm}(\mu_2, S_2, \mu_1, S_1)) \]
or by using \text{symm} = \text{TRUE}. The arguments are reversed compared to some other references, like Wikipedia. To match those versions use \text{kl.norm}(\mu_2, S_2, \mu_1, S_1)

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

Examples

```
mu1 <- rnorm(5)
s1 <- matrix(rnorm(100), ncol=5)
S1 <- t(s1) %*% s1

mu2 <- rnorm(5)
s2 <- matrix(rnorm(100), ncol=5)
S2 <- t(s2) %*% s2

## RMSE
rmse.muS(mu1, S1, mu2, S2)

## expected log likelihood
Ellik.norm(mu1, S1, mu2, S2)

## KL is not symmetric
kl.norm(mu1, S1, mu2, S2)
kl.norm(mu2, S2, mu1, S1)

## symmetric version
kl.norm(mu2, S2, mu1, S1, symm=TRUE)
```

monomvn

Maximum Likelihood Estimation for Multivariate Normal Data with Monotone Missingness

Description

Maximum likelihood estimation of the mean and covariance matrix of multivariate normal (MVN) distributed data with a monotone missingness pattern. Through the use of parsimonious/shrinkage regressions (e.g., pls, pcr, ridge, lasso, etc.), where standard regressions fail, this function can handle an (almost) arbitrary amount of missing data.
Usage

```r
monomvn(y, pre = TRUE, method = c("plsr", "pcr", "lasso", "lar", "forward.stagewise", "stepwise", "ridge", "factor"), p = 0.9, ncomp.max = Inf, batch = TRUE, validation = c("CV", "LOO", "Cp"), obs = FALSE, verb = 0, quiet = TRUE)
```

Arguments

- `y`: data matrix were each row is interpreted as a random sample from a MVN distribution with missing values indicated by NA.
- `pre`: logical indicating whether pre-processing of the `y` is to be performed. This sorts the columns so that the number of NAs is non-decreasing with the column index.
- `method`: describes the type of parsimonious (or shrinkage) regression to be performed when standard least squares regression fails. From the pls package we have "plsr" (pls, the default) for partial least squares and "pcr" (pcr) for standard principal component regression. From the lars package (see the "type" argument to lars) we have "lasso" for L1-constrained regression, "lar" for least angle regression, "forward.stagewise" and "stepwise" for fast implementations of classical forward selection of covariates. From the MASS package we have "ridge" as implemented by the lm.ridge function. The "factor" method treats the first `p` columns of `y` as known factors.
- `p`: when performing regressions, `p` is the proportion of the number of columns to rows in the design matrix before an alternative regression method (those above) is performed as if least-squares regression has "failed". Least-squares regression is known to fail when the number of columns equals the number of rows, hence a default of `p = 0.9 <= 1`. Alternatively, setting `p = 0` forces method to be used for every regression. Intermediate settings of `p` allow the user to control when least-squares regressions stop and the method ones start. When `method = "factor"` the `p` argument represents an integer (positive) number of initial columns of `y` to treat as known factors.
- `ncomp.max`: maximal number of (principal) components to include in a method—only meaningful for the "plsr" or "pcr" methods. Large settings can cause the execution to be slow as it drastically increases the cross-validation (CV) time.
- `batch`: indicates whether the columns with equal missingness should be processed together using a multi-response regression. This is more efficient if many OLS regressions are used, but can lead to slightly poorer, even unstable, fits when parsimonious regressions are used.
- `validation`: method for cross validation when applying a parsimonious regression method. The default setting of "CV" (randomized 10-fold cross-validation) is the faster method, but does not yield a deterministic result and does not apply for regressions on less than ten responses. "LOO" (leave-one-out cross-validation) is deterministic, always applicable, and applied automatically whenever "CV" cannot be used. When standard least squares is appropriate, the methods implemented the lars package (e.g. lasso) support model choice via the "Cp" statistic, which defaults to the "CV" method when least squares fails. This argument is ignored for the "ridge" method; see details below.
obs logical indicating whether or not to (additionally) compute a mean vector and covariance matrix based only on the observed data, without regressions. I.e., means are calculated as averages of each non-NA entry in the columns of y, and entries (a, b) of the covariance matrix are calculated by applying \(\text{cov}(y_a, y_b) \) to the jointly non-NA entries of columns a and b of y.

verb whether or not to print progress indicators. The default (\(\text{verb} = 0 \)) keeps quiet, while any positive number causes brief statement about dimensions of each regression to print to the screen as it happens. \(\text{verb} = 2 \) causes each of the ML regression estimators to be printed along with the corresponding new entries of the mean and columns of the covariance matrix. \(\text{verb} = 3 \) requires that the \text{RETURN} key be pressed between each print statement.

quiet causes warnings about regressions to be silenced when \text{TRUE}.

Details

If \(\text{pre} = \text{TRUE} \) then \text{monomvn} first re-arranges the columns of y into nondecreasing order with respect to the number of missing (NA) entries. Then (at least) the first column should be completely observed. The mean components and covariances between the first set of complete columns are obtained through the standard \text{mean} and \text{cov} routines.

Next each successive group of columns with the same missingness pattern is processed in sequence (assuming \(\text{batch} = \text{TRUE} \)). Suppose a total of \(j \) columns have been processed this way already. Let \(y_2 \) represent the non-missing contingent of the next group of \(k \) columns of y with and identical missingness pattern, and let \(y_1 \) be the previously processed \(j-1 \) columns of y containing only the rows corresponding to each non-NA entry in \(y_2 \). I.e., \(nrow(y_1) = nrow(y_2) \). Note that \(y_1 \) contains no NA entries since the missing data pattern is monotone. The \(k \) next entries (indices \(j:(j+k) \)) of the mean vector, and the \(j:(j+k) \) rows and columns of the covariance matrix are obtained by multivariate regression of \(y_2 \) on \(y_1 \). The regression method used (except in the case of \(\text{method} = \text{"factor"} \)) depends on the number of rows and columns in \(y_1 \) and on the \(p \) parameter. Whenever \(ncol(y_1) < p*nrow(y_1) \) least-squares regression is used, otherwise \(\text{method} = c(\text{"plsr"}, \text{"plsr"}) \). If ever a least-squares regression fails due to co-linearity then one of the other methods is tried. The "factor" method always involves an OLS regression on (a subset of) the first \(p \) columns of y.

All methods require a scheme for estimating the amount of variability explained by increasing the numbers of coefficients (or principal components) in the model. Towards this end, the \text{pls} and \text{lars} packages support 10-fold cross validation (CV) or leave-one-out (LOO) CV estimates of root mean squared error. See \text{pls} and \text{lars} for more details. \text{monomvn} uses CV in all cases except when \(nrow(y_1) \leq 10 \), in which case CV fails and LOO is used. Whenever \(nrow(y_1) \leq 3 \) \text{plsr} fails, so \text{plsr} is used instead. If \(\text{quiet} = \text{FALSE} \) then a warning is given whenever the first choice for a regression fails.

For \text{pls} methods, RMSEs are calculated for a number of components in \(1: \text{ncomp.max} \) where a NULL value for \text{ncomp.max} it is replaced with

\[
\text{ncomp.max} <- \min(\text{ncomp.max}, ncol(y_2), nrow(y_1)-1)
\]

which is the max allowed by the \text{pls} package.

Simple heuristics are used to select a small number of components (\text{ncomp} for \text{pls}), or number of coefficients (for \text{lars}), which explains a large amount of the variability (RMSE). The \text{lars} methods use a "one-standard error rule" outlined in Section 7.10, page 216 of HTF below. The \text{pls} package does not currently support the calculation of standard errors for CV estimates of RMSE, so a simple
linear penalty for increasing ncomp is used instead. The ridge constant (lambda) for \texttt{lm.ridge} is set using the \texttt{optimize} function on the GCV output.

Based on the ML ncol(y1)+1 regression coefficients (including intercept) obtained for each of the columns of \(y_2 \), and on the corresponding matrix of residual sum of squares, and on the previous \(j-1 \) means and rows/cols of the covariance matrix, the \(j:(j+k) \) entries and rows/cols can be filled in as described by Little and Rubin, section 7.4.3.

Once every column has been processed, the entries of the mean vector, and rows/cols of the covariance matrix are re-arranged into their original order.

Value

\texttt{monomvn} returns an object of class "\texttt{monomvn}" , which is a list containing a subset of the components below.

- \texttt{call}
a copy of the function call as used
- \texttt{mu}
estimated mean vector with columns corresponding to the columns of \(y \)
- \texttt{S}
estimated covariance matrix with rows and columns corresponding to the columns of \(y \)
- \texttt{na}
when \texttt{pre} = \texttt{TRUE} this is a vector containing number of NA entries in each column of \(y \)
- \texttt{o}
when \texttt{pre} = \texttt{TRUE} this is a vector containing the index of each column in the sorting of the columns of \(y \) obtained by \(o \leftarrow \texttt{order}(\texttt{na}) \)
- \texttt{method}
method of regression used on each column, or "complete" indicating that no regression was necessary
- \texttt{ncomp}
number of components in a \texttt{plsr} or \texttt{pcr} regression, or \texttt{NA} if such a method was not used. This field is used to record \(\lambda \) when \texttt{lm.ridge} is used
- \texttt{lambda}
if \texttt{method} is one of \texttt{c("lasso", "forward.stagewise", "ridge")}, then this field records the \(\lambda \) penalty parameters used
- \texttt{mu.obs}
when \texttt{obs} = \texttt{TRUE} this is the "observed" mean vector
- \texttt{S.obs}
when \texttt{obs} = \texttt{TRUE} this is the "observed" covariance matrix, as described above. Note that \(S.\texttt{obs} \) is usually not positive definite

Note

The CV in \texttt{plsr} and \texttt{lars} are random in nature, and so can be dependent on the random seed. Use \texttt{validation=L00} for deterministic (but slower) result.

When using \texttt{method = "factor"} in the current version of the package, the factors in the first \(p \) columns of \(y \) must also obey the monotone pattern, and, have no more NA entries than the other columns of \(y \).

Be warned that the \texttt{lars} implementation of "\texttt{forward.stagewise}" can sometimes get stuck in (what seems like) an infinite loop. This is not a bug in the \texttt{monomvn} package; the bug has been reported to the authors of \texttt{lars}

Author(s)

Robert B. Gramacy <rbg@vt.edu>
References

Some of the code for monomvn, and its subroutines, was inspired by code found on the world wide web, written by Daniel Heitjan. Search for “fcn.q” https://bobby.gramacy.com/r_packages/monomvn/

See Also

bmonomvn, em.norm in the now defunct norm and mvnmle packages

Examples

```r
## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3 -- try adding
## verb=3 argument for a step-by-step breakdown
data(cement.miss)
out <- monomvn(cement.miss)
out
out$mu
out$S

##
## A bigger example, comparing the various methods
##
## generate N=100 samples from a 10-d random MVN
xmuS <- randmvn(100, 20)

## randomly impose monotone missingness
xmiss <- rmono(xmuS$x)

## plsr
oplsr <- monomvn(xmiss, obs=TRUE)
oplsr
Ellik.norm(oplsr$mu, oplsr$S, xmuS$mu, xmuS$S)

## calculate the complete and observed RMSEs
n <- nrow(xmiss) - max(oplsr$na)
```
x.c <- xmiss[1:n,]
mu.c <- apply(x.c, 2, mean)
S.c <- cov(x.c)*(n-1)/n
Ellik.norm(mu.c, S.c, xmuS$mu, xmuS$S)
Ellik.norm(oplsr$mu.obs, oplsr$S.obs, xmuS$mu, xmuS$S)

plcr
opcr <- monomvn(xmiss, method="pcr")
Ellik.norm(opcr$mu, opcr$S, xmuS$mu, xmuS$S)

ridge regression
oridge <- monomvn(xmiss, method="ridge")
Ellik.norm(oridge$mu, oridge$S, xmuS$mu, xmuS$S)

lasso
olasso <- monomvn(xmiss, method="lasso")
Ellik.norm(olasso$mu, olasso$S, xmuS$mu, xmuS$S)

lar
olar <- monomvn(xmiss, method="lar")
Ellik.norm(olar$mu, olar$S, xmuS$mu, xmuS$S)

forward.stagewise
ofs <- monomvn(xmiss, method="forward.stagewise")
Ellik.norm(ofsmu, ofsS, xmuS$mu, xmuS$S)

stepwise
ostep <- monomvn(xmiss, method="stepwise")
Ellik.norm(ostep$mu, ostep$S, xmuS$mu, xmuS$S)

monomvn.s3

Summarizing monomvn output

Description

Summarizing, printing, and plotting the contents of a "monomvn"-class object

Usage

```r
## S3 method for class 'monomvn'
summary(object, Si = FALSE, ...)
## S3 method for class 'summary.monomvn'
print(x, ...)
## S3 method for class 'summary.monomvn'
plot(x, gt0 = FALSE, main = NULL,
     xlab = "number of zeros", ...)
```
Arguments

object a "monomvn"-class object that must be named object for the generic methods `summary.monomvn`

x a "monomvn"-class object that must be named x for generic printing and plotting via `print.summary.monomvn` and `plot.summary.monomvn`

Si boolean indicating whether objectS should be inverted and inspected for zeros within `summary.monomvn`, indicating pairwise independence; default is FALSE

gt0 boolean indicating whether the histograms in `plot.summary.monomvn` should exclude columns of objectS or Si without any zero entries

main optional text to be added to the main title of the histograms produced by the generic `plot.summary.monomvn`

xlab label for the x-axes of the histograms produced by `plot.summary.monomvn`; otherwise default automatically-generated text is used

Details

These functions work on the output from both `monomvn` and `bmonomvn`.

`print.monomvn` prints the call followed by a summary of the regression method used at each iteration of the algorithm. It also indicates how many completely observed features (columns) there were in the data. For non-least-squares regressions (i.e., `plsr`, `lars` and `lm.ridge` methods) and indication of the method used for selecting the number of components (i.e., `CV`, `LOO`, etc., or `none`) is provided

`summary.monomvn` summarizes information about the number of zeros in the estimated covariance matrix objectS and its inverse

`print.summary.monomvn` calls `print.monomvn` on the object and then prints the result of `summary.monomvn`

`plot.summary.monomvn` makes histograms of the number of zeros in the columns of objectS and its inverse

Value

`summary.monomvn` returns a "summary.monomvn"-class object, which is a list containing (a subset of) the items below. The other functions do not return values.

obj the "monomvn"-class object

marg the proportion of zeros in objectS

S0 a vector containing the number of zeros in each column of objectS

cond if input Si = TRUE this field contains the proportion of zeros in the inverse of objectS

Si0 if input Si = TRUE this field contains a vector with the number of zeros in each column of the inverse of objectS

Note

There is one further S3 function for "monomvn"-class objects that has its own help file: `plot.monomvn`
monomvn.solve.QP

Author(s)
Robert B. Gramacy <rbg@vt.edu>

References
https://bobby.gramacy.com/r_packages/monomvn/

See Also
bmonomvn, monomvn, plot.monomvn

monomvn.solve.QP
Solve a Quadratic Program

Description

Solve a Quadratic Program specified by a QP object using the covariance matrix and mean vector specified

Usage

```r
monomvn.solve.QP(S, QP, mu = NULL)
```

Arguments

- **S**: a positive-definite covariance matrix whose dimensions agree with the Quadratic Program, e.g., `nrow(QP$Amat)`
- **QP**: a Quadratic Programming object like one that can be generated automatically by `default.QP`
- **mu**: an mean vector with `length(mu) = nrow(QP$Amat)` that is required if `QP$dmu == TRUE` or `QP$mu.constr[1] != 0`

Details

The protocol executed by this function is identical to the one used on samples of Σ and μ obtained in `bmonomvn` when a Quadratic Program is specified through the QP argument. For more details on the specification of the Quadratic Program implied by a QP object, please see `default.QP` and the examples therein

Value

The output is a vector whose length agrees with the dimension of S, describing the solution to the Quadratic Program given

Author(s)
Robert B. Gramacy <rbg@vt.edu>
plot.monomvn

See Also
default.QP, bmonomvn, and solve.QP in the quadprog package

Description
Functions for visualizing the output from bmonomvn, particularly the posterior standard deviation estimates of the mean vector and covariance matrix, and samples from the solution to a Quadratic Program

Usage
S3 method for class 'monomvn'
plot(x, which=c("mu", "S", "Snz", "Sinz", "QP"),
xaxis=c("numna", "index"), main=NULL, uselog=FALSE, ...)

Arguments
x a "monomvn"-class object that must be named x for generic plotting
which determines the parameter whose standard deviation to be visualized: the mean vector ("mu" for sqrt($mu.var)); the covariance matrix ("S" for sqrt($S.var)), or "S(i)nz" for sqrt($S(i).nz), which both result in an image plot; or the distribution of solutions $W to a Quadratic Program that may be obtained by supplying QP = TRUE as input to bmonomvn
xaxis indicates how x-axis (or x- and y-axis in the case of which = "S" || "S(i)nz") should be displayed. The default option "numna" shows the (ordered) number of missing entries (NAs) in the corresponding column, whereas "index" simply uses the column index; see details below
main optional text to be added to the main title of the plots; the default of NULL causes the automatic generation of a title
uselog a logical which, when TRUE, causes the log of the standard deviation to be plotted instead
...
passed to plot.default

Details
Currently, this function only provides a visualization of the posterior standard deviation estimates of the parameters, and the distributions of samples from the posterior of the solution to a specified Quadratic Program. Therefore it only works on the output from bmonomvn

All types of visualization (specified by which) are presented in the order of the number of missing entries in the columns of the data passed as input to bmonomvn. In the case of which = "mu" this means that y-values are presented in the order x$o, where the x-axis is either 1:length(x$o) in the case of xaxis = "index", or x$na[x$o] in the case of xaxis = "numna". When which = "S"
is given the resulting image plot is likewise ordered by \(x \) where the \(x \)- and \(y \)-axis are as above, except that in the case where \(xaxis = \text{"numna"} \) the repeated counts of \(\text{NAs} \) are are adjusted by small increments so that \(x \) and \(y \) arguments to image are distinct. Since a boxplot is used when which = \"QP\" it may be that \(xaxis = \text{"index"} \) is preferred.

Value

The only output of this function is beautiful plots.

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

bmonomvn, print.monomvn, summary.monomvn

randmvn

Randomly Generate a Multivariate Normal Distribution

Description

Randomly generate a mean vector and covariance matrix describing a multivariate normal (MVN) distribution, and then sample from it.

Usage

```r
randmvn(N, d, method = c("normwish", "parsimonious"),
       mup=list(mu = 0, s2 = 1), s2p=list(a = 0.5, b = 1),
       pnz=0.1, nu=Inf)
```

Arguments

- **N**
 - number of samples to draw
- **d**
 - dimension of the MVN, i.e., the length of the mean vector and the number of rows/cols of the covariance matrix
- **method**
 - the default generation method is "normwish" uses the direct method described in the details section below, whereas the "parsimonious" method builds up the random mean vector and covariance via regression coefficients, intercepts, and variances. See below for more details. Here, a random number of regression coefficients for each regression are set to zero
- **mup**
 - a list with entries μ and σ^2: μ is the prior mean for the independent components of the normally distributed mean vector; σ^2 is the prior variance
a list with entries a and b only valid for method = "parsimonious": $a > 0$
is the baseline inverse gamma prior scale parameter for the regression variances
(the actual parameter used for each column i in $1:d$ of the covariance matrix is $a + i - 1$); $b >= 0$ is the rate parameter

a scalar $0 <= \text{pnz} <= 1$, only valid for method = "parsimonious": determines
the binomial proportion of non-zero regression coefficients in the sequential
build-up of μ and S, thereby indirectly determining the number of non-zero
entries in S

a scalar $>= 1$ indicating the degrees of freedom of a Student-t distribution to be
used instead of an MVN when not infinite

Details

In the direct method ("normwish") the components of the mean vector μ are iid from a standard
normal distribution, and the covariance matrix S is drawn from an inverse–Wishart distribution with
degrees of freedom $d + 2$ and mean (centering matrix) diag(d)

In the "parsimonious" method μ and S are built up sequentially by randomly sampling intercepts,
regression coefficients (of length $i-1$ for i in $1:d$) and variances by applying the monomvn equa-
tions. A unique prior results when a random number of the regression coefficients are set to zero.
When none are set to zero the direct method results

Value

The return value is a list with the following components:

- μ: randomly generated mean vector of length d
- S: randomly generated covariance matrix with d rows and d columns
- x: if $N > 0$ then x is an Nd matrix of N samples from the MVN with mean vector μ
 and covariance matrix S; otherwise when $N = 0$ this component is not included

Note

requires the rmvnorm function of the mvtnorm package

Author(s)

Robert B. Gramacy <rbg@vt.edu>

See Also

rwish, rmvnorm, rmono

Examples

randmvn(5, 3)
Description

This function fits the specified ordinary least squares or parsimonious regression (plsr, pcr, ridge, and lars methods) depending on the arguments provided, and returns estimates of coefficients and (co-)variances in a monomvn friendly format.

Usage

```r
regress(X, y, method = c("lsr", "plsr", "pcr", "lasso", "lar", 
"forward.stagewise", "stepwise", "ridge", "factor"), p = 0,
ncomp.max = Inf, validation = c("CV", "LOO", "Cp"),
verb = 0, quiet = TRUE)
```

Arguments

- `X` data.frame, matrix, or vector of inputs \(X \)
- `y` matrix of responses \(y \) of row-length equal to the leading dimension (rows) of \(X \), i.e., \(\text{ncol}(y) == \text{ncol}(X) \); if \(y \) is a vector, then \(\text{ncol} \) may be interpreted as \(\text{length}(y) \)
- `method` describes the type of parsimonious (or shrinkage) regression, or ordinary least squares. From the \pkg{pls} package we have "plsr" (\pkg{plsr}, the default) for partial least squares and "pcr" (\pkg{pcr}) for standard principal component regression. From the \pkg{lars} package (see the "type" argument to \pkg{lars}) we have "lasso" for L1-constrained regression, "lar" for least angle regression, "forward.stagewise" and "stepwise" for fast implementations of classical forward selection of covariates. From the \pkg{MASS} package we have "ridge" as implemented by the \code{lm.ridge} function. The "factor" method treats the first \(p \) columns of \(y \) as known factors
- `p` when performing regressions, \(0 \leq p \leq 1 \) is the proportion of the number of columns to rows in the design matrix before an alternative regression method (except "lsr") is performed as if least-squares regression "failed". Least-squares regression is known to fail when the number of columns is greater than or equal to the number of rows. The default setting, \(p = 0 \), forces the specified method to be used for every regression unless \(\text{method} = "lsr" \) is specified but is unstable. Intermediate settings of \(p \) allow the user to specify that least squares regressions are preferred only when there are sufficiently more rows in the design matrix (\(X \)) than columns. When \(\text{method} = "factor" \) the \(p \) argument represents an integer (positive) number of initial columns of \(y \) to treat as known factors
- `ncomp.max` maximal number of (principal) components to consider in a method—only meaningful for the "plsr" or "pcr" methods. Large settings can cause the execution to be slow as they drastically increase the cross-validation (CV) time
validation method for cross validation when applying a parsimonious regression method. The default setting of "CV" (randomized 10-fold cross-validation) is the faster method, but does not yield a deterministic result and does not apply for regressions on less than ten responses. "LOO" (leave-one-out cross-validation) is deterministic, always applicable, and applied automatically whenever "CV" cannot be used. When standard least squares is appropriate, the methods implemented the `lars` package (e.g. lasso) support model choice via the "Cp" statistic, which defaults to the "CV" method when least squares fails. This argument is ignored for the "ridge" method; see details below.

verb whether or not to print progress indicators. The default (verb = 0) keeps quiet. This argument is provided for `monomvn` and is not intended to be set by the user via this interface.

quiet causes warnings about regressions to be silenced when TRUE

Details

All methods (except "lsr") require a scheme for estimating the amount of variability explained by increasing numbers of non-zero coefficients (or principal components) in the model. Towards this end, the `pls` and `lars` packages support 10-fold cross validation (CV) or leave-one-out (LOO) CV estimates of root mean squared error. See `pls` and `lars` for more details. The `regress` function uses CV in all cases except when nrow(X) <= 10, in which case CV fails and LOO is used. Whenever nrow(X) <= 3 pcr fails, so `plsr` is used instead. If quiet = FALSE then a warning is given whenever the first choice for a regression fails.

For `pls` methods, RMSEs are calculated for a number of components in 1:ncomp.max where a NULL value for ncomp.max it is replaced with

ncomp.max <- min(ncomp.max, ncol(y), nrow(X)-1)

which is the max allowed by the `pls` package.

Simple heuristics are used to select a small number of components (ncomp for `pls`), or number of coefficients (for `lars`) which explains a large amount of the variability (RMSE). The `lars` methods use a “one-standard error rule” outlined in Section 7.10, page 216 of HTF below. The `pls` package does not currently support the calculation of standard errors for CV estimates of RMSE, so a simple linear penalty for increasing ncomp is used instead. The ridge constant (lambda) for `lm.ridge` is set using the `optimize` function on the GCV output.

Value

`regress` returns a list containing the components listed below.

call a copy of the function call as used

method a copy of the method input argument

ncomp depends on the method used: is NA when method = "lsr"; is the number of principal components for method = "pcr" and method = "plsr"; is the number of non-zero components in the coefficient vector (b, not counting the intercept) for any of the `lars` methods; and gives the chosen λ penalty parameter for method = "ridge"

lambda if method is one of c("lasso", "forward.stagewise", "ridge"), then this field records the λ penalty parameter used
matrix containing the estimated regression coefficients, with ncol(b) = ncol(y) and the intercept in the first row

(biased corrected) maximum likelihood estimate of residual covariance matrix

Note

The CV in `plsr` and `lars` are random in nature, and so can be dependent on the random seed. Use `validation="LOO"` for deterministic (but slower) result

Be warned that the `lars` implementation of "forward.stagewise" can sometimes get stuck in (what seems like) an infinite loop. This is not a bug in the `regress` function; the bug has been reported to the authors of `lars`

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

`monomvn`, `blasso`, `lars` in the `lars` library, `lm.ridge` in the `MASS` library, `plsr` and `pcr` in the `pls` library

Examples

```r
## following the lars diabetes example
data(diabetes)
attach(diabetes)

## Ordinary Least Squares regression
reg.ols <- regress(x, y)

## Lasso regression
reg.lasso <- regress(x, y, method="lasso")

## partial least squares regression
reg.plsr <- regress(x, y, method="plsr")

## ridge regression
reg.ridge <- regress(x, y, method="ridge")

## compare the coefs
data.frame(ols=reg.ols$b, lasso=reg.lasso$b, plsr=reg.plsr$b, ridge=reg.ridge$b)
```
returns

plsr=reg.plsr$b, ridge=reg.ridge$b)

summarize the posterior distribution of lambda2 and s2
detach(diabetes)

<table>
<thead>
<tr>
<th>returns</th>
<th>Financial Returns data from NYSE and AMEX</th>
</tr>
</thead>
</table>

Description

Monthly returns of common domestic stocks traded on the NYSE and the AMEX from April 1968 until 1998; also contains the return to the market

Usage

data(returns)
data(returns.test)
data(market)
data(market.test)

Format

The returns provided are collected in a data.frame with 1168 columns, and 360 rows in the case of returns and 12 rows for returns.test. The columns are uniquely coded to identify the stock traded on NYSE or AMEX. The market return is in two vectors market and market.test of length 360 and 12, respectively

Details

The columns contain monthly returns of common domestic stocks traded on the NYSE and the AMEX from April 1968 until 1998. returns contains returns up until 1997, whereas returns.test has the returns for 1997. Both data sets have been cleaned in the following way. All stocks have a share price greater than $5 and a market capitalization greater than 20% based on the size distribution of NYSE firms. Stocks without completely observed return series in 1997 were also discarded.

The market returns provided are essentially the monthly return on the S&P500 during the same period, which is highly correlated with the raw monthly returns weighted by their market capitalization

Source

This data is a subset of that originally used by Chan, Karceski, and Lakonishok (1999), and subsequently by several others; see the references below. We use it as part of the monomvn package as an example of a real world data set following a nearly monotone missingness pattern
References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

monomvn, bmonomvn

Examples

data(returns)

```r
## investigate the monotone missingness pattern
returns.na <- is.na(returns)
image(1:ncol(returns), 1:nrow(returns), t(returns.na))

## for a portfolio balancing exercise, see
## the example in the bmonomvn help file
```

rmono
RANDOMLY IMPOSE A MONOTONE MISSINGNESS PATTERN

Description

Randomly impose a monotone missingness pattern by replacing the ends of each column of the input matrix by a random number of NAs

Usage

rmono(x, m = 7, ab = NULL)

Arguments

- **x**
data matrix
- **m**
minimum number of non-NA entries in each column
- **ab**
a two-vector of α (ab[1]) and β (ab[2]) parameters to a Beta(α, β) distribution describing the proportion of NA entries in each column. The default setting ab = NULL yields a uniform distribution
Details

The returned x always has one (randomly selected) complete column, and no column has fewer than m non-missing entries. Otherwise, the proportion of missing entries in each column can be uniform, or it can have a beta distribution with parameters α (ab[1]) and β (ab[2]).

Value

returns a matrix with the same dimensions as the input x

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/monomvn/

See Also

randmvn

Examples

```r
out <- randmvn(10, 3)
rmono(out$x)
```

rwish

Draw from the Wishart Distribution

Description

Random generation from the Wishart distribution.

Usage

`rwish(v, S)`

Arguments

<table>
<thead>
<tr>
<th>v</th>
<th>degrees of freedom (scalar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>inverse scale matrix ($p \times p$)</td>
</tr>
</tbody>
</table>

Details

The mean of a Wishart random variable with v degrees of freedom and inverse scale matrix S is vS.
Value

Returns generates one random draw from the distribution which is a matrix with the same dimensions as S

References

This was copied from the MCMCpack package

Examples

draw <- rwish(3, matrix(c(1,.3,.3,1),2,2))
Index

* datagen
 randmvn, 31
 rmono, 37
* datasets
 cement, 16
 returns, 36
* distribution
 randmvn, 31
 rwish, 38
* hplot
 blasso.s3, 8
 monomvn.s3, 27
 plot.monomvn, 30
* methods
 blasso.s3, 8
 monomvn.s3, 27
* multivariate
 bmonomvn, 10
 metrics, 20
 monomvn, 22
* optimize
 bmonomvn, 10
 default.QP, 17
 monomvn.solve.QP, 29
* package
 monomvn-package, 2
* regression
 blasso, 3
 bmonomvn, 10
 monomvn, 22
 regress, 33
bhs (blasso), 3
blasso, 3, 10–12, 14, 35
blasso.s3, 8
bmonomvn, 10, 18, 19, 26, 28–31, 37
boxplot, 31
bridge (blasso), 3
cement, 16
cov, 24
default.QP, 11, 12, 14, 17, 29, 30
Ellik.norm (metrics), 20
image, 30, 31
kl.norm (metrics), 20
lars, 7, 23, 33–35
lm, 7
lm.ridge, 7, 23, 25, 28, 33–35
market (returns), 36
mean, 24
metrics, 20
monomvn, 3, 11–14, 17, 22, 28, 29, 34, 35, 37
monomvn-package, 2
monomvn.s3, 27
monomvn.solve.QP, 18, 19, 29
optimize, 25, 34
order, 13, 25
pcr, 23–25, 33–35
plot, 9
plot.blasso, 8, 9
plot.blasso (blasso.s3), 8
plot.default, 8, 28, 30
plot.monomvn, 14, 28, 29, 30
plot.summary.monomvn, 28
plot.summary.monomvn (monomvn.s3), 27
plsr, 23–25, 33–35
print.blasso, 8, 9
print.blasso (blasso.s3), 8
print.monomvn, 28, 31
print.monomvn (monomvn.s3), 27
print.summary.blasso, 8
print.summary.blasso (blasso.s3), 8
print.summary.monomvn, 9, 28
INDEX

print.summary.monomvn(monomvn.s3), 27
randmvn, 31
regress, 7, 33
returns, 14, 36
rmono, 32, 37
rmse.muS(metrics), 20
rmvnorm, 32
rwish, 32, 38
solve.QP, 11, 14, 17, 19, 30
summary, 8, 9
summary.blasso, 8, 9
summary.blasso(blasso.s3), 8
summary.monomvn, 28, 31
summary.monomvn(monomvn.s3), 27
warning, 24, 34
Wishart(rwish), 38