library(hmcdm)
= dim(Design_array)[1]
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = dim(Design_array)[3] L
<- numeric(K)
tau for(k in 1:K){
<- runif(1,.2,.6)
tau[k]
}= matrix(0,K,K)
R # Initial alphas
<- c(.5,.5,.4,.4)
p_mastery <- matrix(0,N,K)
Alphas_0 for(i in 1:N){
for(k in 1:K){
<- which(R[k,]==1)
prereqs if(length(prereqs)==0){
<- rbinom(1,1,p_mastery[k])
Alphas_0[i,k]
}if(length(prereqs)>0){
<- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
Alphas_0[i,k]
}
}
}<- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
Alphas table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 26 119 124 69 12
<- runif(K,.1,.3)
Svec <- runif(K,.1,.3)
Gvec
<- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Y_sim Svec=Svec,Gvec=Gvec)
= hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
output_NIDA_indept 100, 30, R = R)
#> 0
output_NIDA_indept#>
#> Model: NIDA_indept
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#>
#> Model: NIDA_indept
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1544 0.2124
#> 0.1527 0.2716
#> 0.2336 0.2351
#> 0.1842 0.1802
#>
#> Transition Parameters:
#> taus_EAP
#> τ1 0.4969
#> τ2 0.3157
#> τ3 0.2717
#> τ4 0.4502
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.06531
#> 0001 0.02429
#> 0010 0.13878
#> 0011 0.02071
#> 0100 0.08161
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 22472.21
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4908
#> M2: 0.49
#> total scores: 0.6054
<- summary(output_NIDA_indept)
a head(a$ss_EAP)
#> [,1]
#> [1,] 0.1543751
#> [2,] 0.1527295
#> [3,] 0.2335961
#> [4,] 0.1841662
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.8678571 0.8914286 0.9400000 0.9614286 0.9728571
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.5742857 0.6342857 0.7914286 0.8628571 0.8942857
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2060.161 NA 17897.09 1838.244 21795.49
#> D(theta_bar) 1965.087 NA 17332.90 1820.789 21118.77
#> DIC 2155.234 NA 18461.28 1855.699 22472.21
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.02 0.02 0.00 0.70 0.98
#> [2,] 0.46 0.22 0.46 0.82 1.00
#> [3,] 0.76 0.84 0.72 0.12 0.38
#> [4,] 0.44 0.54 0.68 0.82 0.72
#> [5,] 0.16 0.26 0.74 0.40 0.76
#> [6,] 0.94 0.66 0.22 0.72 0.74
head(a$PPP_item_means)
#> [1] 0.58 0.36 0.70 0.86 0.24 0.76
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.82 0.28 0.56 0.60 0.86 0.82 0.86 0.60 0.06 0.32 0.66 0.18 0.62
#> [2,] NA NA 0.78 0.66 0.72 0.28 0.62 0.62 0.98 0.16 0.14 0.82 0.24 0.44
#> [3,] NA NA NA 0.02 0.38 0.20 0.54 0.82 0.98 0.00 0.52 0.16 0.56 0.42
#> [4,] NA NA NA NA 0.80 0.52 0.80 0.02 0.98 0.88 0.14 0.68 0.90 0.72
#> [5,] NA NA NA NA NA 0.24 0.16 0.10 0.98 0.00 0.18 0.92 0.18 0.12
#> [6,] NA NA NA NA NA NA 0.14 0.56 0.54 0.90 0.66 0.80 0.48 0.66
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.10 0.04 0.16 0.22 0.68 0.40 0.80 0.38 0.34 0.34 0.36 0.66
#> [2,] 0.90 0.48 0.96 0.48 0.52 0.84 0.84 0.58 0.52 0.24 0.90 0.86
#> [3,] 0.18 0.76 0.80 0.48 0.92 0.38 0.46 0.30 0.78 0.70 0.12 0.24
#> [4,] 0.82 0.92 0.38 0.84 0.98 0.40 0.22 0.26 0.98 0.40 0.28 0.74
#> [5,] 0.42 0.08 0.68 0.62 0.56 0.26 0.88 0.94 0.86 0.96 0.96 0.50
#> [6,] 0.22 0.78 0.40 0.54 0.86 0.78 0.98 0.18 0.82 0.40 0.12 0.94
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.30 0.90 0.30 0.06 0.34 0.34 0.18 0.08 0.68 0.74 0.02 0.42
#> [2,] 0.80 0.40 0.38 0.06 0.12 0.62 0.30 0.84 0.64 0.78 0.34 0.34
#> [3,] 0.32 0.06 0.90 0.76 0.34 0.44 0.28 0.72 0.52 0.56 0.32 0.88
#> [4,] 0.18 0.68 0.98 0.02 0.22 0.68 0.66 0.50 0.44 0.32 0.84 0.52
#> [5,] 0.46 0.98 0.00 0.56 0.36 0.54 0.68 0.48 0.66 0.64 0.60 0.20
#> [6,] 0.32 0.00 0.50 0.42 0.22 0.74 0.62 0.88 0.00 0.08 0.22 0.84
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.02 0.74 0.60 0.52 0.30 0.88 0.90 0.56 0.94 0.58 0.86 0.44
#> [2,] 0.12 0.76 0.50 0.58 0.52 0.98 0.12 0.90 0.40 0.64 0.78 0.56
#> [3,] 0.42 0.72 1.00 0.68 0.66 0.26 1.00 0.76 0.70 0.34 0.12 0.70
#> [4,] 0.80 0.56 0.38 0.34 0.60 0.72 0.16 0.76 0.64 0.30 0.94 0.94
#> [5,] 0.04 0.88 0.66 0.54 0.68 0.74 0.90 0.64 0.80 0.70 0.58 0.80
#> [6,] 0.54 0.24 0.62 0.10 0.40 0.18 0.72 0.44 0.06 0.22 0.06 0.82