library(hmcdm)
= length(Test_versions)
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = nrow(Test_order) L
<- ETAmat(K, J, Q_matrix)
ETAs <- sample(1:2^K, N, replace = L)
class_0 <- matrix(0,N,K)
Alphas_0 = c(0,0)
mu_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Sig_thetatau = matrix(rnorm(N*2),N,2)
Z = Z%*%chol(Sig_thetatau)
thetatau_true = thetatau_true[,1]
thetas_true = thetatau_true[,2]
taus_true = 3
G_version = 0.8
phi_true for(i in 1:N){
<- inv_bijectionvector(K,(class_0[i]-1))
Alphas_0[i,]
}<- c(-2, .4, .055) # empirical from Wang 2017
lambdas_true <- sim_alphas(model="HO_joint",
Alphas lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 51 57 97 115 30
<- matrix(runif(J*2,.1,.2), ncol=2)
itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true 2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
RT_itempars_true[,
<- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
Y_sim itempars=itempars_true)
<- sim_RT(Alphas,Q_matrix,Design_array,
L_sim RT_itempars_true,taus_true,phi_true,G_version)
= hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
output_HMDCM_RT_joint Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.18173 0.12209
#> 0.20571 0.12054
#> 0.18765 0.04716
#> 0.08832 0.22509
#> 0.11316 0.16415
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.25233
#> λ1 0.24781
#> λ2 0.04834
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1380
#> 0001 0.1780
#> 0010 0.2239
#> 0011 0.2177
#> 0100 0.1477
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 156726.4
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4964
#> M2: 0.49
#> total scores: 0.6286
<- summary(output_HMDCM_RT_joint)
a
a#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.18173 0.12209
#> 0.20571 0.12054
#> 0.18765 0.04716
#> 0.08832 0.22509
#> 0.11316 0.16415
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.25233
#> λ1 0.24781
#> λ2 0.04834
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1380
#> 0001 0.1780
#> 0010 0.2239
#> 0011 0.2177
#> 0100 0.1477
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 156726.4
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5072
#> M2: 0.49
#> total scores: 0.6281
$ss_EAP
a#> [,1]
#> [1,] 0.18172984
#> [2,] 0.20571084
#> [3,] 0.18764730
#> [4,] 0.08831541
#> [5,] 0.11316258
#> [6,] 0.12749734
#> [7,] 0.16526013
#> [8,] 0.19290705
#> [9,] 0.19752326
#> [10,] 0.11672841
#> [11,] 0.10735308
#> [12,] 0.18651972
#> [13,] 0.23939671
#> [14,] 0.23659833
#> [15,] 0.12225033
#> [16,] 0.22750307
#> [17,] 0.17374229
#> [18,] 0.16720903
#> [19,] 0.16760024
#> [20,] 0.18417524
#> [21,] 0.13489969
#> [22,] 0.14625810
#> [23,] 0.20436702
#> [24,] 0.18245568
#> [25,] 0.22044639
#> [26,] 0.14727817
#> [27,] 0.16521516
#> [28,] 0.17076557
#> [29,] 0.13856993
#> [30,] 0.13478178
#> [31,] 0.21243626
#> [32,] 0.24888085
#> [33,] 0.14633973
#> [34,] 0.23837025
#> [35,] 0.16449767
#> [36,] 0.17209176
#> [37,] 0.10378234
#> [38,] 0.14154425
#> [39,] 0.20597578
#> [40,] 0.08946400
#> [41,] 0.14822972
#> [42,] 0.18334679
#> [43,] 0.16799209
#> [44,] 0.05833630
#> [45,] 0.22830662
#> [46,] 0.15549188
#> [47,] 0.16248934
#> [48,] 0.14696982
#> [49,] 0.09206677
#> [50,] 0.19339051
head(a$ss_EAP)
#> [,1]
#> [1,] 0.18172984
#> [2,] 0.20571084
#> [3,] 0.18764730
#> [4,] 0.08831541
#> [5,] 0.11316258
#> [6,] 0.12749734
<- cor(thetas_true,a$thetas_EAP))
(cor_thetas #> [,1]
#> [1,] 0.7823287
<- cor(taus_true,a$response_times_coefficients$taus_EAP))
(cor_taus #> [,1]
#> [1,] 0.9863389
<- cor(as.vector(itempars_true[,1]),a$ss_EAP))
(cor_ss #> [,1]
#> [1,] 0.7497122
<- cor(as.vector(itempars_true[,2]),a$gs_EAP))
(cor_gs #> [,1]
#> [1,] 0.5792237
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.9335714 0.9442857 0.9521429 0.9557143 0.9614286
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.7600000 0.7914286 0.8285714 0.8428571 0.8685714
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2375.810 135684.9 14760.43 2994.890 155816.0
#> D(theta_bar) 2127.038 135258.0 14687.85 2832.824 154905.7
#> DIC 2624.583 136111.9 14833.01 3156.955 156726.4
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.14 0.82 0.56 0.30 0.96
#> [2,] 0.90 0.96 1.00 0.10 0.78
#> [3,] 0.76 0.28 0.46 0.22 0.50
#> [4,] 0.94 0.22 0.98 0.88 0.68
#> [5,] 0.92 0.36 0.76 0.70 0.54
#> [6,] 0.52 0.30 0.96 0.38 0.84
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.76 0.56 0.40 0.86 0.60
#> [2,] 0.42 0.54 0.06 0.94 0.64
#> [3,] 0.38 0.46 0.68 0.46 0.44
#> [4,] 0.68 0.40 0.98 0.58 0.50
#> [5,] 0.70 0.02 0.88 0.42 1.00
#> [6,] 0.06 0.78 0.38 0.96 0.14
head(a$PPP_item_means)
#> [1] 0.54 0.48 0.56 0.48 0.60 0.50
head(a$PPP_item_mean_RTs)
#> [1] 0.34 0.46 0.42 0.22 0.60 0.60
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.68 0.56 0.86 0.88 0.82 0.74 0.76 0.08 0.70 0.42 0.34 0.74 0.34
#> [2,] NA NA 0.08 0.30 0.26 0.74 0.42 0.64 0.94 0.32 0.98 0.90 0.96 0.78
#> [3,] NA NA NA 0.36 0.32 0.44 0.66 0.14 0.80 0.30 0.42 0.64 0.54 0.58
#> [4,] NA NA NA NA 0.94 0.74 0.84 0.52 0.88 0.86 0.90 0.44 0.82 0.44
#> [5,] NA NA NA NA NA 0.46 0.54 0.64 0.78 0.46 0.76 0.46 0.84 0.94
#> [6,] NA NA NA NA NA NA 0.30 0.82 0.62 0.38 0.72 0.68 1.00 0.44
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.60 0.14 0.56 0.22 0.48 0.64 0.32 0.54 0.06 0.30 0.40 0.50
#> [2,] 0.38 0.84 0.60 1.00 0.82 0.14 0.54 0.16 0.26 0.58 0.62 0.20
#> [3,] 0.22 0.18 0.84 0.30 0.40 0.74 0.86 0.68 0.14 0.80 0.06 0.50
#> [4,] 0.86 0.66 0.70 0.90 0.74 0.70 0.28 0.44 0.78 0.58 0.74 0.74
#> [5,] 0.58 0.10 0.62 0.36 0.30 0.98 0.68 0.52 0.20 0.46 0.82 0.72
#> [6,] 0.48 0.60 0.46 0.18 0.18 0.24 0.28 0.62 0.08 0.66 0.78 0.06
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.04 0.34 0.62 0.08 0.38 0.20 0.42 0.72 0.64 0.18 0.22 0.42
#> [2,] 0.16 0.00 0.04 0.42 0.66 0.32 0.70 0.66 0.52 0.52 0.92 0.20
#> [3,] 0.54 0.42 0.48 0.40 0.16 0.04 0.84 0.66 0.18 0.18 0.00 0.02
#> [4,] 0.40 0.84 0.92 0.10 1.00 0.52 0.76 0.80 0.90 0.72 0.92 0.88
#> [5,] 0.06 0.60 1.00 0.70 0.64 0.08 0.76 0.58 0.66 0.34 0.46 0.66
#> [6,] 0.82 0.14 0.42 0.02 0.26 0.16 0.70 0.62 0.30 0.46 0.18 0.32
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.00 0.22 0.88 0.90 0.90 0.92 0.52 0.94 0.70 0.62 0.98 0.52
#> [2,] 0.04 0.84 0.06 0.90 0.70 0.90 0.38 0.94 0.74 0.92 0.98 0.86
#> [3,] 0.66 0.12 0.56 0.14 0.28 1.00 0.34 0.76 0.12 0.44 0.80 0.84
#> [4,] 0.84 1.00 0.74 0.84 0.90 1.00 0.62 0.82 0.36 0.36 0.58 0.86
#> [5,] 0.00 0.60 0.90 0.44 0.42 0.96 0.86 0.50 0.90 0.78 0.70 0.68
#> [6,] 0.10 0.78 0.48 0.90 0.34 0.14 0.68 0.32 0.22 0.60 0.36 0.60