On the usage of the geepack

Søren Højsgaard and Ulrich Halekoh

geepack version 1.3.9 as of 2022-08-16

Contents

1 Introduction 1
2 Citing geepack 1
3 Simulating a dataset 2
4 Using the waves argument 3
5 Using a fixed correlation matrix and the zcor argument 5
6 When do GEE's work best? 6

1 Introduction

This note contains a few extra examples. We illustrate the usage of a the waves argument and the zcor argument together with a fixed working correlation matrix for the geeglm() function.

2 Citing geepack

The primary reference for the geepack package is

> library(geepack)
> citation("geepack")

To cite geepack in publications use:

3 Simulating a dataset

To illustrate the usage of the `waves` argument and the `zcor` argument together with a fixed working correlation matrix for the `geeglm()` we simulate some data suitable for a regression model.

```r
> library(geepack)
> timeorder <- rep(1:5, 6)
> tvar <- timeorder + rnorm(length(timeorder))
> idvar <- rep(1:6, each=5)
> uuu <- rep(rnorm(6), each=5)
> yvar <- 1 + 2*tvar + uuu + rnorm(length(tvar))
> simdat <- data.frame(idvar, timeorder, tvar, yvar)
> head(simdat,12)

     idvar timeorder   tvar     yvar
   1       1        1   1.46      6.91
   2       1        2   1.80      8.51
   3       1        3   2.88      9.27
   4       1        4   4.79     11.65
   5       1        5   3.43      8.71
   6       1        6   2.81      9.26
   7       2        1   0.90      1.56
   8       2        2   2.79      7.78
   9       2        3   2.83      7.86
  10       2        4   4.34      5.49
  11       3        5   7.89      15.64
  12       3        6   3.04      4.39
```

Notice that clusters of data appear together in `simdat` and that observations are ordered (according to `timeorder`) within clusters.

We can fit a model with an AR(1) error structure as

```r
> mod1 <- geeglm(yvar~tvar, id=idvar, data=simdat, corstr="ar1")
> mod1
```

Call:
```
geeglm(formula = yvar ~ tvar, data = simdat, id = idvar, corstr = "ar1")
```

Coefficients:
```
(Intercept)     tvar
```

1.237191 1.890937

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.066774

Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
 alpha
 0.7132266

Number of clusters: 6 Maximum cluster size: 5

This works because observations are ordered according to time within each subject in the dataset.

4 Using the waves argument

If observations were not ordered according to cluster and time within cluster we would get the wrong result:

```r
> set.seed(123)
> ## library(doBy)
> simdatPerm <- simdat[sample(nrow(simdat)),]
> ## simdatPerm <- orderBy(~idvar, simdatPerm)
> simdatPerm <- simdatPerm[order(simdatPerm$idvar),]
> head(simdatPerm)

     idvar timeorder tvar  yvar
  3       1       3 3.881084 9.266183
  5       1       5 3.431835 8.718863
  4       1       4 4.786512 11.653951
  1       1       1 1.459487 6.913834
  2       1       2 1.801321 8.513286
 10       2       5 7.887098 15.648384

Notice that in simdatPerm data is ordered according to subject but the time ordering within subject is random.

Fitting the model as before gives

```r
> mod2 <- geeglm(yvar~tvar, id=idvar, data=simdatPerm, corstr="ar1")
> mod2

Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm, id = idvar,
 corstr = "ar1")

Coefficients:
(Intercept) tvar
 0.9047226 1.9234933
```
Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.103769

Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
alpha
0.7509257

Number of clusters: 6 Maximum cluster size: 5

Likewise if clusters do not appear contiguously in data we also get the wrong result (the clusters are not recognized):

> ## simdatPerm2 <- orderBy(~timeorder, data=simdat)
> simdatPerm2 <- simdat[order(simdat$timeorder),]
> geeglm(yvar~tvar, id=idvar, data=simdatPerm2, corstr="ar1")

Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm2, id = idvar,
        corstr = "ar1")

Coefficients:  
(Intercept)  tvar
1.403637  1.817417

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.050361

Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
alpha
0

Number of clusters: 30 Maximum cluster size: 1

To obtain the right result we must give the waves argument:

> wav <- simdatPerm$timeorder
> wav

[1] 3 5 4 1 2 5 4 3 2 1 5 4 1 3 2 4 3 5 2 1 2 4 5 3 1 3 2 1 5 4

> mod3 <- geeglm(yvar~tvar, id=idvar, data=simdatPerm, corstr="ar1", waves=wav)
> mod3

Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm, id = idvar,
        waves = wav, corstr = "ar1")
Coefficients:
      (Intercept)       tvar
     1.237191 1.890937

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.066774

Correlation: Structure = ar1  Link = identity
Estimated Correlation Parameters:
alpha
0.7132266

Number of clusters: 6 Maximum cluster size: 5

5 Using a fixed correlation matrix and the zcor argument

Suppose we want to use a fixed working correlation matrix:

```r
> cor.fixed <- matrix(c(1 , 0.5 , 0.25, 0.125, 0.125,
+ 0.5 , 1 , 0.25, 0.125, 0.125,
+ 0.25, 0.25, 1 , 0.5 , 0.125,
+ 0.125, 0.125, 0.5 , 1 , 0.125,
+ 0.125, 0.125, 0.125, 0.125, 1), 5, 5)
> cor.fixed
[1,] 1.000 0.500 0.250 0.125 0.125
[2,] 0.500 1.000 0.250 0.125 0.125
[3,] 0.250 0.250 1.000 0.500 0.125
[4,] 0.125 0.125 0.500 1.000 0.125
[5,] 0.125 0.125 0.125 0.125 1.000

Such a working correlation matrix has to be passed to geeglm() as a vector in the zcor argument. This vector can be created using the fixed2Zcor() function:

```r
> zcor <- fixed2Zcor(cor.fixed, id=simdatPerm$idvar, waves=simdatPerm$timeorder)
> zcor

[1] 0.125 0.500 0.250 0.125 0.125 0.125 0.125 0.125 0.125 0.125
[13] 0.125 0.125 0.500 0.125 0.125 0.125 0.250 0.250 0.500 0.125
[25] 0.125 0.500 0.125 0.250 0.250 0.500 0.125 0.125 0.125 0.125
[37] 0.250 0.125 0.125 0.500 0.125 0.125 0.250 0.250 0.500 0.125
[49] 0.125 0.250 0.250 0.250 0.125 0.500 0.500 0.125 0.125 0.125

Notice that zcor contains correlations between measurements within the same cluster. Hence if a cluster contains only one observation, then there will be generated no entry in zcor for that cluster. Now we can fit the model with:

```r
> mod4 <- geeglm(yvar~tvar, id=idvar, data=simdatPerm, corstr="fixed", zcor=zcor)
> mod4
```
Call:
geeglm(formula = yvar ~ tvar, data = simdatPerm, id = idvar, 
zcor = zcor, corstr = "fixed")

Coefficients:
(Intercept)   tvar
 1.423496   1.815892

Degrees of Freedom: 30 Total (i.e. Null); 28 Residual

Scale Link: identity
Estimated Scale Parameters: [1] 2.050593

Correlation: Structure = fixed Link = identity
Estimated Correlation Parameters:
alpha:1
  1

Number of clusters: 6 Maximum cluster size: 5

6 When do GEE’s work best?

GEEs work best when you have relatively many relatively small clusters in your data.