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dsmmR-package dsmmR : Estimation and Simulation of Drifting Semi-Markov Models
Description

Performs parametric and non-parametric estimation and simulation of drifting semi-Markov pro-
cesses. The definition of parametric and non-parametric model specifications is also possible. Fur-
thermore, three different types of drifting semi-Markov models are considered. These models differ
in the number of transition matrices and sojourn time distributions used for the computation of a
number of semi-Markov kernels, which in turn characterize the drifting semi-Markov kernel.

Details

Introduction

The difference between the Markov models and the semi-Markov models concerns the modelling
of the sojourn time distributions. The Markov models (in discrete time) are modelled by a sojourn
time following the Geometric distribution. The semi-Markov models are able to have a sojourn time
distribution of arbitrary shape. The further difference with a drifting semi-Markov model, is that
we have d + 1 (arbitrary) sojourn time distributions and d + 1 transition matrices (Model 1), where
d is defined as the polynomial degree. Through them, we compute d + 1 semi-Markov kernels.
In this work, we also consider the possibility for obtaining these semi-Markov kernels with d + 1
transition matrices and 1 sojourn time distribution (Model 2) or d 4 1 sojourn time distributions and
1 transition matrix (Model 3).

Definition

Drifting semi-Markov processes are particular non-homogeneous semi-Markov chains for which
the drifting semi-Markov kernel qe (u,v,1) is defined as the probability that, given at the instance ¢
the previous state is u, the next state state v will be reached with a sojourn time of [:

qr(u,v,l) = P(Jy = v, Xy = l[Ji—1 = u),
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.....

where 7 is the model size, defined as the length of the embedded Markov chain (J)¢¢ o, ...} minus
the last state, where J; is the state at the instant ¢t and X; = S; — S;_1 is the sojourn time of the
state Jy_1.

The drifting semi-Markov kernel ¢+ is a linear combination of the product of d + 1 semi-Markov
kernels q:, where every semi-Markov kernel is the product of a transition matrix p and a sojourn
time distribution f. We define the situation when both p and f are "drifting" between d + 1 fixed
points of the model as Model 1, and thus we will use the exponential (1) as a way to refer to the

(1) (€]

drifting semi-Markov kernel ¢, and corresponding semi-Markov kernels ¢, in this case. For

Model 2, we allow the transition matrix p to drift but not the sojourn time disuiributions f, and for
Model 3 we allow the sojourn time distributions f to drift but not the transition matrix p. The
exponential (2) or (3) will be used for signifying Model 2 or Model 3, respectively. In the general
case an exponential will not be used.

Model 1
(1)

Both p and f are drifting in this case. Thus, the drifting semi-Markov kernel ¢, is a linear
combination of the product of d + 1 semi-Markov kernels ¢ 1(1), which are given by:
d
(1) D =n, ) l
qi (U,U, )_pﬁ(uav)fé(u/l% )a
% i
where for: = 0, ..., d we have d 4 1 Markov transition matrices Pi (u, v) of the embedded Markov

chain (J;);eo,... n}» and d + 1 sojourn time distributions f% (u,v,1). Therefore, the drifting semi-
Markov kernel is described as: '

d d

o, ) =37 A) ¢ (w0, 1) = 3 Aty p

t
" i=0 i=0

q (um)f%(u,ul),

i
d

where A;,7 =0,...,d are d + 1 polynomials with degree d, which satisfy the conditions:

nj
A; <d> = 1=},

where the indicator function lg=jy =1, if + = j, 0 otherwise.
Model 2

In this case, p is drifting and f is not drifting. Therefore, the drifting semi-Markov kernel is now
described as:

q%@) (u,v,1) = Z Ait) ¢ P (u,v,1) = Z Ai(t) ps (u,0) f(u,v,1).

Model 3

In this case, f is drifting and p is not drifting. Therefore, the drifting semi-Markov Kernel is now
described as:

d

d
q%@ (u,v,1) = ZAZ-(t) q -(3)(u7v, )= ZAi(t) p(u,v) f1 (u,v,1).

=0 =0
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Parametric and non-parametric model specifications
In this package, we can define parametric and non-parametric drifting semi-Markov models.

For the parametric case, several discrete distributions are considered for the modelling of the so-
journ times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. This is done
from the function parametric_dsmm which returns an object of the S3 class (dsmm_parametric,
dsmm).

The non-parametric model specification concerns the sojourn time distributions when no assump-
tions are done about the shape of the distributions. This is done through the function called
nonparametric_dsmm(), that returns an object of class (dsmm_nonparametric, dsmm).

It is also possible to proceed with a parametric or non-parametric estimation for a model on an
existing sequence through the function fit_dsmm(), which returns an object with the S3 class
(dsmm_fit_parametric, dsmm) or (dsmm_fit_nonparametric, dsmm) respectively, depending on
the given argument estimation = "parametric” or estimation = "nonparametric” .

Therefore, the dsmm class acts like a wrapper class for drifting semi-Markov model specifica-
tions, while the classes dsmm_fit_parametric, dsmm_fit_nonparametric, dsmm_parametric
and dsmm_nonparametric are exclusive to the functions that create the corresponding models, and
inherit methods from the dsmm class.

In summary, based on an dsmm object it is possible to use the following methods:

» Simulate a sequence through the function simulate.dsmm().

* Get the drifting semi-Markov kernel ¢« (u, v,1), for any choice of u,v,[ or ¢, through the
function get_kernel().

Restrictions

The following restrictions must be satisfied for every drifting semi-Markov model:

* The drifting semi-Markov kernel ¢: (u,v,l), for every ¢t € {0,...,n} and u € E, has its
sums over v and [, equal to 1: '

+oo +oo
Z Zq%(u,v,l) = ZZAZ(t) q%(u7v7l) =1

vek =1 veFE =1

* Therefore, we also get that for every i € {0,...,d} and v € E, the semi-Markov kernel
q: (u, v, 1) has its sums over v and [ equal to 1:

+o0
ZZqé(u,v,l) =1

veE =1

* Lastly, like in semi-Markov models, we do not allow sojourn times equal to 0 or passing into
the same state:
qe(u,v,0) =0,YVu,v € E,

q%(u,u,l) =0,Vue E,le{l,...,+o0}.

Model specification restrictions

When we define a drifting semi-Markov model specification through the functions parametric_dsmm
or nonparametric_dsmm, the following restrictions need to be satisfied.
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Model 1
The semi-Markov kernels are equal to ¢ m(u, v,l) = pi (u, v)f% (u,v,1). Therefore, Vu € E the

k3

d
sums of p: (u, v) over v and the sums of f: (u, v, ) over | must be equal to 1:

Zp%(u,v) =1,

veEE

+oo
Zfé(u,v,l) =1
=1

Model 2

The semi-Markov kernels are equal to ¢ (2)(u, v,1) = p:(u,v)f(u,v,l). Therefore, Vu € E the

%
sums ofp% (u,v) over v and the sums of f(u,v,1) over [ must be equal to 1:

S pswo) =1,

vEE

+oo
Zf(u,v,l) =1.
1=1

Model 3

The semi-Markov kernels are equal to qu) (u,v,1) = p(u, v)fé: (u,v,1). Therefore, Yu € E the

a
sums of p(u,v) over v and the sums of f; (u, v, ) over I must be equal to 1:

Z p(u,v) =1,

veE
—+oo
Zfé(u,v,l) =1
=1

Community Guidelines

For third parties wishing to contribute to the software, or to report issues or problems about the
software, they can do so directly through the development github page of the package.

Notes

Automated tests are in place in order to aid the user with any false input made and, furthermore, to
ensure that the functions used return the expected output. Moreover, through strict automated tests,
it is made possible for the user to properly define their own dsmm objects and make use of them with
the generic functions of the package.

Author(s)

Maintainer: Ioannis Mavrogiannis <mavrogiannis.ioa@gmail.com>
Authors:

* Vlad Stefan Barbu
* Joannis Mavrogiannis
* Nicolas Vergne
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See Also

For the estimation of a drifting semi-Markov model given a sequence: fit_dsmm.

For drifting semi-Markov model specifications: parametric_dsmm, nonparametric_dsmm.

For the simulation of sequences: simulate.dsmm, create_sequence.

For the retrieval of the drifting semi-Markov kernel through a dsmm object: get_kernel.

create_sequence

Simulate a sequence for states of choice.

Description

This is a wrapper function around sample().

Usage

create_sequence(states, len = 5000, probs = NULL, seed = NULL)

Arguments

states

len

probs

seed

Value

Character vector of unique values. If given the value "DNA" the values c("a",

nonon_non

c","g", "t") are given instead.
Optional. Positive integer with the default value equal to 5000.

Optional. Numeric vector with values interpreted as probabilities for each of the
states in states. Default value is equal to 1 over the number of states given, for
every state.

Optional. Object specifying the initialization of the random number generator
(see more in set. seed).

A character sequence of length len.
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See Also

For the simulation of a sequence with a drifting semi-Markov kernel: simulate.dsmm.
The original function: sample.
About random number generation in R: RNG.

For the theoretical background of drifting semi-Markov models: dsmmR.

Examples

# This is equal to having the argument ‘probs = c(1/4, 1/4, 1/4, 1/4)".
rand_dna_seq <- create_sequence(states = "DNA")
table(rand_dna_seq)

random_letters <- sample(letters, size = 5, replace = FALSE)
rand_dna_seq2 <- create_sequence(

states = random_letters,

probs = c(0.6, 0.3, 0.05, 0.025, 0.025),

len = 10000)
table(rand_dna_seq2)

fit_dsmm Estimation of a drifting semi-Markov chain

Description

Estimation of a drifting semi-Markov chain, given one sequence of states. This estimation can be
parametric or non-parametric and is available for the three types of drifting semi-Markov models.

Usage

fit_dsmm(
sequence,
degree,
f_is_drifting,
p_is_drifting,
states = NULL,

initial_dist = "unif”,
estimation = "nonparametric”,
f_dist = NULL
)
Arguments
sequence Character vector that represents a sequence of states from the state space E.
degree Positive integer that represents the polynomial degree d for the drifting semi-

Markov model.

f_is_drifting Logical. Specifies if f is drifting or not.
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p_is_drifting Logical. Specifies if p is drifting or not.

states Character vector that represents the state space F, with length equal to s =
|E|. Default value is set equal to the sorted, unique states present in the given
sequence.

initial_dist  Optional. Character that represents the method to estimate the initial distribu-
tion.
* "unif": The initial distribution of each state is equal to 1/s (default value).
* "freq"” : The initial distribution of each state is equal to the frequency that
it has in the sequence.

estimation Optional. Character. Represents whether the estimation will be nonparametric
or parametric.
* "nonparametric” : The estimation will be non-parametric (default value).
* "parametric” : The estimation will be parametric.
f_dist Optional. It can be defined in two ways:

e If estimation = "nonparametric”, it is equal to NULL (default value).

* If estimation = "parametric”, it is a character array that specifies the
distributions of the sojourn times, for every state transition. The list of
possible values is: ["unif”, "geom”, "pois"”, "dweibull”, "nbinom”,
NA]J. It can be defined in two ways:

— If f is not drifting, it has dimensions of s X s.

— If f is drifting, it has dimensions of s X s x (d+1) (see more in Details,
Parametric Estimation.)

It is defined similarly to the attribute f_dist in dsmm_parametric.

Details

This function estimates a drifting semi-Markov model in the parametric and non-parametric case.
The parametric estimation can be achieved by the following steps:

1. We obtain the non-parametric estimation of the sojourn time distributions.

2. We estimate the parameters for the distributions defined in the attribute f_dist through the
probabilities that were obtained in step 1.

Three different models are possible for to be estimated for each case. A normalization technique
is used in order to correct estimation errors from small sequences. We will use the exponentials
(1),(2), (3) to distinguish between the drifting semi-Markov kernel g+ and the semi-Markov ker-
nels Zj%- used in Model 1, Model 2, Model 3. More about the theory of d}ifting semi-Markov models
in dsmmR.

Non-parametric Estimation
Model 1
When the transition matrix p of the embedded Markov chain (J)¢cgo,...,n} and the conditional

sojourn time distribution f are both drifting, the drifting semi-Markov kernel can be estimated as:

d
7 (w0, 0) =3 Ai) 71 (u,v,0),

i
‘ d
=0
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vt € {0,...,n},Vu,v € E,VI € {1,...,kmax}, where kp,q, is the maximum sojourn time that
was observed in the sequence and A;,7 = 0,...,d are d + 1 polynomials with degree d (see
dsmmR).

The semi-Markov kernels in(1) (u,v,1),4 = 0,...,d, are estimated through Least Squares Estima-

d
tion (LSE) and are obtained after solving the following system, V¢ € {0,...,n}, Vu,v € E and
vie{l,..., knaz}:
MJ =P,

where the matrices are written as:
o« M= (Mi)ijeqo,ay = (Cimy LA A1), o o
o J= Jii :<A'i(1) ) 7l)
(Ji)ieqo.....d} 9 (u,v,1) 10,
* P=(P)iefo,..ay = (e Lt Ai(t))seo . ay
and we use the following indicator functions:

* 1,(t) = 1{j,_,—uy = 1, if at ¢ the previous state is u, 0 otherwise.

* Luw(t) = 145, —u,7,=v,x,—1} = 1, if at t the previous state is u with sojourn time / and next
state v, 0 otherwise.

In order to obtain the estimations of p (u, v) and fg (u,v,1), we use the following formulas:

By ()= 7" (uv,0),
d
=1
7" (u,v,1)
fl(uvzﬂl)i 4 .
¢ Zkgfz L(l)(uﬂvﬂl)

Model 2

In this case, p is drifting and f is not drifting. Therefore, the estimated drifting semi-Markov kernel
will be given by:

d

72 (w0, =3 A(8) 71 (w0, 1

Q% (U,U, ) ZO l( )Q§ (u,’l}, )a
vt € {0,...,n},Vu,v € E\VI € {1,..., kmax}, Wwhere kpq, is the maximum sojourn time that
was observed in the sequence and A;,i = 0,...,d are d + 1 polynomials with degree d (see

dsmmR). In order to obtain the estimators p and f, we use the estimated semi-Markov kernels ¢ 1(1)

d
from Model 1. Since p is drifting, we define the estimation p the same way as we did in Model 1.
In total, we have the following estimations, Vu,v € E, VIl € {1,... knaz }:

kmaac

ps(uv) =>4,

p i
d
=1

—~

Y (u,0,1),
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Flu,v,0) Siody " (uv,)
U, U, = a Fmon ~ .
ZZ 0 2-1=1 qt( )(vayl)

Thus, the estimated semi-Markov kernels for Model 2, ql(z)(u, v,1) = P (u,v)f(u,v,1), can be

]
1)

written with regards to the estimated semi-Markov kernels of Model 1, 7( as in the following:

d
m“/\ d ~
) (s 20" (w0, D) (S @, (u,0,)
q; (u,v,1) = 5 4 .

Fi d kmaz ~(1
¢ Zi:o =1 q ( (’LL, ’Ua l)

e

Model 3

In this case, f is drifting and p is not drifting. Therefore, the estimated drifting semi-Markov kernel
will be given by:

d
~(3) ) = A, g8 ) l
q% (uw, ) z_; () ﬁ (’LL,'U, )a
vt € {0,...,n},Vu,v € E,VI € {1,...,kmaz}, Where k,q. is the maximum sojourn time that
was observed in the sequence and A;,s = 0,...,d are d + 1 polynomials with degree d (see

dsmmR). In order to obtain the estimators p and f, we use the estimated semi-Markov kernels
estimated semi-Markov kernels § 1(1) from Model 1. Since f is drifting, we define the estimation f

d
the same way as we did in Model 1. In total, we have the following estimations, Yu,v € E VI €

{1 . ma:r}

d kmaz 1
271:0 =1 1( )(u7v»l)

p ('U,,U) = d+ 1 b
. q" (u,0,0)
fi (U,U, l) = . —~ :
‘ ;an’m q (1)(uaval)

s,

Thus, the estimated semi-Markov kernels for Model 3, q g’ )(u7 v, 1) = p (u, U)fé (u,v,1), can be

written with regards to the estimated semi-Markov kernels of Model 1, ,( ), as in the following:

Q.

s

~(1 d Fomaz ~ (1
o 0 ) Ty T @ (w,0,)
q." (u,v,l) = D .
‘ (d+1) T"”(i (u,v,1)

Parametric Estimation
In this package, the parametric estimation of the sojourn time distributions defined in the attribute
f_dist is achieved as follows:

1. We obtain the non-parametric LSE of the sojourn time distributions f.

2. We estimate the parameters for the distributions defined in f_dist through the probabilities
of f, estimated in previously in 1.
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The available distributions for the modelling of the conditional sojourn times of the drifting semi-
Markov model, defined from the argument f_dist, have their parameters estimated through the
following formulas:

* Geometric (p):
f(x) =p(1 —p)*~ 1, where v = 1,2, ..., knqe. We estimate the probability of success p as

such:
R 1
P= 7=~
E(X)
* Poisson (A):
fx) = %, where x = 1,2,..., kpnae. We estimate X > 0 as such:
= E(X)
* Negative binomial («, p):
flz) = %p“(l—p)w_l, where x = 1,2, ..., kpaz. [ is the Gamma function, p is the

probability of success and « € (0, 400) is the parameter describing the number of successful
trials, or the dispersion parameter (the shape parameter of the gamma mixing distribution).
We estimate them as such:

E(X)
Var(X)’

P _ E(X)?
1-p Var(X)-E(X)’

ﬁ:

a=EB(X)

* Discrete Weibull of type 1 (g, 5):

flx) = q(m_l)ﬁ - qzﬁ, where x = 1,2, ..., ke, ¢ is the first parameter with 0 < g < 1 and
B € (0,400) the second parameter. We estimate them as such:

5 Sokmee log; (loga (3, £(4)))
N kmax - 1 '

Note that we require k4, > 2 for estimating E .

¢ Uniform (n): f(z) =1/nwhere x = 1,2, ..., n, for n a positive integer. We use a numerical
method to obtain an estimator for 72 in this case.

Value

Returns an object of S3 class (dsmm_fit_nonparametric, dsmm) or (dsmm_fit_parametric,
dsmm). It has the following attributes:

» dist : List. Contains 2 or 3 arrays, estimation:

— If estimation = "nonparametric” we have 2 arrays:

# p_drift or p_notdrift, corresponding to whether the defined p transition matrix is
drifting or not.
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x f_driftor f_notdrift, corresponding to whether the defined f sojourn time distri-
bution is drifting or not.

— If estimation = "parametric” we have 3 arrays:

% p_drift or p_notdrift, corresponding to whether the defined p transition matrix is
drifting or not.

% f_drift_parametric or f_notdrift_parametric, corresponding to whether the
defined f sojourn time distribution is drifting or not.

% f_drift_parametersor f_notdrift_parameters, which are the defined f sojourn
time distribution parameters, depending on whether f is drifting or not.

seq : Character vector that contains the embedded Markov chain (.J;);cyo,....») of the origi-
nal sequence. It is this attribute of the object that describes the size of the model n. Last state
is also included, for a total length of n + 1, but it is not used for any calculation.

soj_times : Numerical vector that contains the sojourn times spent for each state in seq
before the jump to the next state. Last state is also included, for a total length of n + 1, but it
is not used for any calculation.

initial_dist : Numerical vector that contains an estimation for the initial distribution of the
realized states in sequence. It always has values between 0 and 1.

states : Character vector. Passing down from the arguments. It contains the realized states
given in the argument sequence.

s : Positive integer that contains the length of the character vector given in the attribute
states, which is equal to s = | E]|.

degree : Positive integer. Passing down from the arguments. It contains the polynomial
degree d considered for the drifting of the model.

k_max : Numerical value that contains the maximum sojourn time, which is the maximum
value in soj_times, excluding the last state.

model_size : Positive integer that contains the size of the drifting semi-Markov model n,
which is equal to the length of the embedded Markov chain (Jt)tG{O,...,n}s minus the last
state. It has a value of length(seq) - 1, for seq as defined above.

f_is_drifting: Logical. Passing down from the arguments. Specifies if f is drifting or not.
p_is_drifting : Logical. Passing down from the arguments. Specifies if p is drifting or not.
Model : Character. Possible values:

— "Model_1": Both p and f are drifting.

— "Model_2" : pis drifting and f is not drifting.

— "Model_3": f is drifting and p is not drifting.
estimation : Character. Specifies whether parametric or nonparametric estimation was used.

A_i : Numerical Matrix. Represents the polynomials A;(t) with degree d that were used for
solving the system M J = P. Used for the methods defined for the object. Not printed when
viewing the object.

J_i : Numerical Array. Represents the estimated semi-Markov kernels of the first model

(é\i(l)(u7 v,1))ieqo,....ay that were obtained after solving the system M. = P. Not printed
d

when viewing the object.
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See Also

For the theoretical background of drifting semi-Markov models: dsmmR.
For sequence simulation: simulate.dsmm and create_sequence.
For drifting semi-Markov model specification: parametric_dsmm, nonparametric_dsmm

For the retrieval of the drifting semi-Markov kernel: get_kernel.

Examples

# Create a random sequence

sequence <- create_sequence(”"DNA", len = 2000, seed = 1)
## Alternatively, we could obtain a sequence as follows:
## > data("lambda”, package = "dsmmR")

## > sequence <- c(lambda)

states <- sort(unique(sequence))

degree <- 3

#
# Nonparametric Estimation.
# Fitting a random sequence under distributions of unknown shape.

obj_model_1 <- fit_dsmm(sequence = sequence,
degree = degree,
f_is_drifting = TRUE,
p_is_drifting = TRUE,
states = states,
initial_dist = "freq”,
estimation = "nonparametric”, # default value
f_dist = NULL # default value
)
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cat(paste@("We fitted a sequence with ", obj_model_1$Model, ",\n",

"model size: n = ", obj_model_1$model_size, ",\n",
"length of state space: s = ", obj_model_1$s, ",\n",
"maximum sojourn time: k_max = ", obj_model_1$k_max, " and\n”,

"

"polynomial (drifting) Degree: d = ", obj_model_1%$degree, ".\n"))

# Get the drifting p and f arrays.
p_drift <- obj_model_1$dist$p_drift
f_drift <- obj_model_1$dist$f_drift

cat(paste@("Dimension of p_drift: (s, s, d + 1) = (",

paste(dim(p_drift), collapse = ", "), ").\n",
"Dimension of f_drift: (s, s, k_max, d + 1) = (",
paste(dim(f_drift), collapse = ", "), ").\n"))

obj_model_2 <- fit_dsmm(sequence = sequence,
degree = degree,
f_is_drifting = FALSE,
p_is_drifting = TRUE)

cat(paste@("We fitted a sequence with ", obj_model_2$Model, ".\n"))

# Get the drifting p and non-drifting f arrays.
p_drift_2 <- obj_model_2$dist$p_drift
f_notdrift <- obj_model_2%$dist$f_notdrift

all.equal.numeric(p_drift, p_drift_2) # p is the same as in Model 1.

cat(paste@("Dimension of f_notdrift: (s, s, k_max) = (",
paste(dim(f_notdrift), collapse =", "), ").\n"))

obj_model_3 <- fit_dsmm(sequence = sequence,
degree = degree,
f_is_drifting = TRUE,
p_is_drifting = FALSE)

cat(pasted("We fitted a sequence with ", obj_model_3$Model, ".\n"))

fit_ dsmm
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# Get the drifting f and non-drifting p arrays.

p_notdrift <- obj_model_3$dist$p_notdrift

f_drift_3 <- obj_model_3%$dist$f_drift

all.equal.numeric(f_drift, f_drift_3) # f is the same as in Model 1.

cat(paste@("Dimension of f_notdrift: (s, s) = (",
paste(dim(p_notdrift), collapse =", "), ").\n"))

#
# Parametric Estimation

# Fitting a random sequence under distributions of known shape.
#
### Comments

### 1. For the parametric estimation it is recommended to use a common set
#iH of distributions while only the parameters (of the sojourn times)
it are drifting. This results in (generally) higher accuracy.

### 2. This process is similar to that used in ‘dsmm_parametric()".

s <- length(states)
# Getting the distributions for the states.

# Rows correspond to previous state ‘u‘.
# Columns correspond to next state ‘v'.

f_dist_1 <- matrix(c(NA, "unif", "dweibull”, "nbinom”,
"pois”, NA, "pois”, "dweibull”,
llgeomll’ Ilpoisll’ NA, ngom”,
"dweibull”, 'geom', "pois”, NA),

nrow = s, ncol = s, byrow = TRUE)
f_dist <- array(f_dist_1, dim = c(s, s, degree + 1))
dim(f_dist)

obj_fit_parametric <- fit_dsmm(sequence = sequence,
degree = degree,
f_is_drifting = TRUE,
p_is_drifting = TRUE,
states = states,
initial_dist = 'unif',
estimation = 'parametric',
f_dist = f_dist)

cat("The class of ‘obj_fit_parametric* is : (",

paste@(class(obj_fit_parametric), collapse = ', '), ").\n")

# Estimated parameters.
f_params <- obj_fit_parametric$dist$f_drift_parameters

# The drifting sojourn time distribution parameters.
f_0 <- f_params[,,,1]

f_1.3 <- f_params[,,,2]

f_2.3 <~ f_params[,,,3]

f_1 <- f_params[,,,4]
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params <- paste@('q = ', round(f_params["c", "t", 1, 1, 3),
', beta = ', round(f_params["c", "t", 2, 1, 3))

f_names <- c("f_0", paste@("f_", 1:(degree-1), "/", degree), "f_1")
all_names <- paste(f_names, ":", params)
cat("The drifting of the parameters for passing from \n",

"*ut = 'c¢' to ‘v® = 't' under a discrete Weibull distribution is:",

"\n", all_names[1], "\n", all_names[2],

"\n", all_names[3], "\n", all_names[4])

obj_fit_parametric_2 <- fit_dsmm(sequence = sequence,
degree = degree,
f_is_drifting = FALSE,
p_is_drifting = TRUE,
initial_dist = 'unif"',
estimation = 'parametric',
f_dist = f_dist_1)

cat("The class of ‘obj_fit_parametric_2‘ is : (",

paste@(class(obj_fit_parametric_2), collapse = ', '), ").\n")
# Estimated parameters.
f_params_2 <- obj_fit_parametric_2$dist$f_notdrift_parameters

params_2 <- paste@('q = ', round(f_params_2["c", "t", 1], 3),
', beta = ', round(f_params_2["c", "t", 21, 3))
cat("Not-drifting parameters for passing from ",
"*ut = 'c' to ‘v’ = '"t' \n under a discrete Weibull distribution are:\n",

u
paste("f :", params_2))

#
# Some methods for the “dsmm_fit_nonparametric* and
# “dsmm_fit_parametric® objects.

#

sim_seq_nonparametric <- simulate(obj_model_1, nsim = 10)
str(sim_seq_nonparametric)

kernel_drift_parametric <- get_kernel(obj_fit_parametric, klim = 10)
str(kernel_drift_parametric)

get_kernel Obtain the Drifting semi-Markov kernel
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Description

17

This is a generic method that computes and returns the drifting semi-Markov kernel as a numerical
array of dimensions s X § X kyqr X (n+ 1).

Usage

get_kernel(obj, t, u, v, 1, klim = 100)

Arguments

obj

klim

Details

An object that inherits from the S3 classes dsmm, dsmm_fit_parametric, or
dsmm_fit_nonparametric, dsmm_nonparametric or dsmm_parametric.

Optional, but recommended. Positive integer specifying the instance ¢ of the
visited states.

Optional. Can be either of the two options below:

non

* Character specifying the previous state u, e.g. u="a".

* Positive integer, specifying a state in the state space E. For example, if £ =
{a,¢,g,t} and u = 1, it corresponds to the state a, if u = 2, it corresponds to
the state c.

Optional. Can be either of the two options below:

n_n

 Character specifying the next state v, e.g. v="c

* Positive integer, specifying a state in the state space E. For example, if £ =
{a,¢,g,t} and v = 3, it corresponds to the state ¢, if v = 4, it corresponds to
the state ¢.

Optional. Positive integer specifying the sojourn time [ that is spent in the pre-
vious state u.

Optional. Positive integer. Used only when obj inherits from the S3 classes
dsmm_parametric or dsmm_fit_parametric. Specifies the time horizon used
to approximate the d + 1 sojourn time distributions if f is drifting, or just 1
sojourn time distribution if f is not drifting. Default value is 100.

A larger value will result in a considerably larger kernel, which has dimensions
of s X s X klim x (n + 1), which will increase the memory requirements and
will slow down considerably the simulate.dsmm() method. However, this will
lead to better estimations through fit_dsmm(). (dsmm_parametric, fit_dsmm,
simulate.dsmm)

The drifting semi-Markov kernel is given as the probability that, given at the instance ¢ the previous
state is u, the next state state v will be reached with a sojourn time of [:

qe(u,v,l) = P(Jy =v, Xy =1|Ji—1 = u),

where n is the model size, defined as the length of the embedded Markov chain (Jt)te{o,...,n} minus
the last state, J; is the visited state at the instant ¢ and X; = S; — S;_ is the sojourn time of the
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state J;_1. Specifically, it is given as the sum of a linear combination:

d
qt (u,v,0) = Z Ai(t) qi (u,v,1),
i=0
where A;,i = 0,...,d are d + 1 polynomials with degree d that satisfy certain conditions (see
dsmmR) and q: (u,v,1),4=0,...,dare d + 1 semi-Markov kernels. Three possible model speci-

fications are described below. We will use the exponentials (1), (2), (3) to distinguish between the
drifting semi-Markov kernel g: and the semi-Markov kernels qs used in Model 1, Model 2 and
Model 3.

Model 1

In this case, both p and f are "drifting" between d + 1 fixed points of the model, hence the "drifting"
&

in drifting semi-Markov models. Therefore, the semi-Markov kernels ¢ ;
d

are equal to:

©

0w 0,0) = pa (u,0) f (u,0,1),

i
d

s

where fori = 0, ..., d we have d 4+ 1 Markov Transition matrices pi (u,v), and d + 1 sojourn time
distributions fé- (u,v,1), where d is the polynomial degree.

Thus, the drifting semi-Markov kernel will be equal to:

d d
0t 0,0) =Y Ai(t) g (w0.0) = D7 Ail) py (u,0)f 5 (u,0,1)
' i=0 i=0

Model 2

In this case, p is drifting and f is not drifting. Therefore, the semi-Markov kernels ¢ 1(2) are equal
to: ¢

2
g2 (u,0,0) = p o (u,0) f(u,0,1).

i
Thus, the drifting semi-Markov kernel will be equal to:

d d
0 (v, 1) = 3 A1) ¢ (wv, 1) = 37 At) py (w0)f (u,0,0)
' i=0 i=0
Model 3
In this case, f is drifting and p is not drifting.
3)

n
d

q '(3)(“',1)7 Z) = p(’LL,U)f% (U,’U,l)«

Therefore, the semi-Markov kernels ¢,/ are now described as:

als

Thus, the drifting semi-Markov kernel will be equal to:

d d

q? (u,v,1) = ZAi(t) q -(3)(u,v,l) = ZAi(t) p(u,v) fs(u,v,0)

x
n d

=0 =0
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Value

An array with dimensions of s X § X ke X (n+ 1), giving the value of the drifting semi-Markov
kernel g (u,v,1) for the corresponding (u, v, [, t). If any of u, v, [ or t were specified, their dimen-
sion in the array becomes 1.

See Also

For the objects required to calculate this kernel: fit dsmm, parametric_dsmm, nonparametric_dsmm.
For sequence simulation through this kernel: simulate.dsmm.

For the theoretical background of drifting semi-Markov models: dsmmR.

Examples

# Setup.
states <- c("Rouen”, "Bucharest”, "Samos"”, "Aigio”, "Marseille")
seq <- create_sequence(states, probs = c(0.3, 0.1, 0.1, 0.3, 0.2))
obj_model_2 <- fit_dsmm(

sequence = seq,

states = states,

degree = 3,

f_is_drifting = FALSE,

p_is_drifting = TRUE

# Get the kernel.

kernel_model_2 <- get_kernel(obj_model_2)

cat(paste@("If no further arguments are made, kernel has dimensions
"for all u, v, 1, t:\n",
"(s, s, kemax, n + 1) = (",
paste(dim(kernel_model_2), collapse =", "), ")"))

n
’

# Specifying “t*.

kernel_model_2_t <- get_kernel(obj_model_2, t = 100)

# kernel_model_2_t[ , , , t = 100]

cat(paste@("If we specify t, the kernel has dimensions for "
"all the remaining u, v, l:\n(s, s, k_max) = (",
paste(dim(kernel_model_2_t), collapse = ", "), ")"))

’

# Specifying “t* and ‘u‘.

kernel_model_2_tu <- get_kernel(obj_model_2, t = 2, u = "Aigio")

# kernel_model_2_tu["Aigio", , , t = 2]

cat(paste@("If we specify t and u, the kernel has dimensions for "
"all the remaining v, l:\n(s, k_max) = (",
paste(dim(kernel_model_2_tu), collapse = ", "), ")"))

)

# Specifying “t*, ‘u® and ‘v*'.
kernel_model_2_tuv <- get_kernel(obj_model_2, t = 3,
u = "Rouen”, v = "Bucharest")
# kernel_model_2_tuv["Rouen”, "Bucharest”, , t = 3]
cat(paste@("If we specify t, u and v, the kernel has dimensions "
"for all 1l:\n(k_max) = (",

’
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paste(length(kernel_model_2_tuv), collapse =", "), ")"))

# It is possible to ask for any valid combination of ‘u‘, ‘v, ‘1% and “t‘.

is.dsmm Check if an object has a valid dsmm class

Description

Checks for the validity of the specified attributes and the inheritance of the S3 class dsmm. This
class acts like a parent class for the classes dsmm_fit_nonparametric, dsmm_fit_parametric,
dsmm_parametric and dsmm_nonparametric.

Usage
is.dsmm(obj)

Arguments

obj Arbitrary R object.

Value

TRUE or FALSE.

See Also

is.dsmm_fit_nonparametric, is.dsmm_fit_nonparametric, is.dsmm_parametric, is.dsmm_nonparametric

is.dsmm_fit_nonparametric
Check if an object has a valid dsmm_fit_nonparametric class

Description
Checks for the validity of the specified attributes and the inheritance of the S3 class dsmm_fit_nonparametric.
This class inherits methods from the parent class dsmm.

Usage

is.dsmm_fit_nonparametric(obj)

Arguments

obj Arbitrary R object.
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Value

TRUE or FALSE.

See Also

is.dsmm, is.dsmm_fit_parametric, is.dsmm_nonparametric, is.dsmm_parametric

is.dsmm_fit_parametric
Check if an object has a valid dsmm_fit_parametric class

Description
Checks for the validity of the specified attributes and the inheritance of the S3 class dsmm_fit_parametric.
This class inherits methods from the parent class dsmm.

Usage

is.dsmm_fit_parametric(obj)

Arguments

obj Arbitrary R object.

Value

TRUE or FALSE.

See Also

is.dsmm, is.dsmm_fit_nonparametric, is.dsmm_parametric, is.dsmm_nonparametric

is.dsmm_nonparametric Check if an object has a valid dsmm_nonparametric class

Description
Checks for the validity of the specified attributes and the inheritance of the S3 class dsmm_nonparametric.
This class inherits methods from the parent class dsmm.

Usage

is.dsmm_nonparametric(obj)
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Arguments

obj Arbitrary R object.

Value

TRUE or FALSE.

See Also

is.dsmm, is.dsmm_fit_nonparametric, is.dsmm_fit_parametric, is.dsmm_parametric

is.dsmm_parametric Check if an object has a valid dsmm_parametric class

Description

Checks for the validity of the specified attributes and the inheritance of the S3 class dsmm_parametric.
This class inherits methods from the parent class dsmm.

Usage

is.dsmm_parametric(obj)

Arguments

obj Arbitrary R object.

Value

TRUE or FALSE.

See Also

is.dsmm, is.dsmm_fit_parametric, is.dsmm_fit_nonparametric, is.dsmm_nonparametric
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lambda lambda genome

Description

Contains the complete genome of the Escherichia phage Lambda.

Usage

data("lambda”, package = "dsmmR")

data(lambda, package = "dsmmR") # equivalent.

# The following requires the package to be loaded,
# e.g. through ‘library(dsmmR)*.

data("lambda")

data(lambda)

Format

A vector object of type "character” and length of 48502. It has class of "Rdata”.

References
Sanger, F., Coulson, A. R., Hong, G. F,, Hill, D. F,, & Petersen, G. B. (1982). Nucleotide sequence
of bacteriophage A DNA. Journal of molecular biology, 162(4), 729-773.

See Also

data

Examples

data("lambda”, package = "dsmmR")

class(lambda)
sequence <- c(lambda) # Convert to "character” class
str(sequence)
nonparametric_dsmm Non-parametric Drifting semi-Markov model specification
Description

Creates a non-parametric model specification for a drifting semi-Markov model. Returns an object
of class (dsmm_nonparametric, dsmm).
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Usage

nonparametric_dsmm(
model_size,
states,
initial_dist,
degree,
k_max,
f_is_drifting,
p_is_drifting,

p_dist,
f_dist
)
Arguments
model_size Positive integer that represents the size of the drifting semi-Markov model n.
It is equal to the length of a theoretical embedded Markov chain (Jt)te{O,...,n}’
without the last state.
states Character vector that represents the state space ' . It has length equal to s =

|E].
initial_dist Numerical vector of s probabilities, that represents the initial distribution for
each state in the state space F.

degree Positive integer that represents the polynomial degree d for the drifting semi-
Markov model.

k_max Positive integer that represents the maximum sojourn time of choice, for the
drifting semi-Markov model.

f_is_drifting Logical. Specifies if f is drifting or not.
p_is_drifting Logical. Specifies if p is drifting or not.
p_dist Numerical array, that represents the probabilities of the transition matrix p of
the embedded Markov chain (J;);cqo,....n} (it is defined the same way in the
parametric_dsmm function). It can be defined in two ways:
* If p is not drifting, it has dimensions of s X s.
o If p is drifting, it has dimensions of s x s x (d + 1) (see more in Details,
Defined Arguments.)

f_dist Numerical array, that represents the probabilities of the conditional sojourn time
distributions f. 0 is allowed for state transitions that we do not wish to have a
sojourn time distribution (e.g. all state transitions to the same state should have
0 as their value). It can be defined in two ways:

* If f is not drifting, it has dimensions of s X s X k;,q4-

o If f is drifting, it has dimensions of s X s X k4 X (d + 1) (see more in
Details, Defined Arguments.)

Details

Defined Arguments

For the non-parametric case, we explicitly define:
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1. The transition matrix of the embedded Markov chain (J;):cqo,... n}» given in the attribute
p_dist:

* If p is not drifting, it contains the values:
p(u,v),Vu,v € E,

given in an array with dimensions of s x s, where the first dimension corresponds to the
previous state v and the second dimension corresponds to the current state v.

* If p is drifting then, for ¢ € {0, ..., d}, it contains the values:

pi(u,v),Yu,v € E,

i
d

given in an array with dimensions of s x s X (d+1), where the first and second dimensions
are defined as in the non-drifting case, and the third dimension corresponds to the d + 1
different matrices Pi-

2. The conditional sojourn time distribution, given in the attribute f_dist:

 If f is not drifting, it contains the values:
fu,v,0),Yu,v € ENVL € {1,..., kmaz},

given in an array with dimensions of s X s X k4., Where the first dimension corresponds
to the previous state u, the second dimension corresponds to the current state v, and the
third dimension correspond to the sojourn time [.

o If f is drifting then, for ¢ € {0, ..., d}, it contains the values:
f%(u,v,l)ﬁu,v eEVIe{l,...  knaz},

given in an array with dimensions of s X s X k. X (d + 1), where the first, second
and third dimensions are defined as in the non-drifting case, and the fourth dimension
corresponds to the d + 1 different arrays fé.

Value

Returns an object of the S3 class dsmm_nonparametric,dsmm.

e dist : List. Contains 2 arrays, passing down from the arguments:

— p_drift or p_notdrift, corresponding to whether the defined p transition matrix is
drifting or not.

— f_drift or f_notdrift, corresponding to whether the defined f sojourn time distribu-
tion is drifting or not.

e initial_dist : Numerical vector. Passing down from the arguments. It contains the initial
distribution of the drifting semi-Markov model.

* states : Character vector. Passing down from the arguments. It contains the state space E.

* s: Positive integer. It contains the number of states in the state space, s = |E
in the attribute states.

, which is given

* degree : Positive integer. Passing down from the arguments. It contains the polynomial
degree d considered for the drifting of the model.
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k_max : Numerical value. Passing down from the arguments. It contains the maximum sojourn
time, for the drifting semi-Markov model.

model_size : Positive integer. Passing down from the arguments. It contains the size of the
drifting semi-Markov model n, which represents the length of the embedded Markov chain
(Jt)teqo,...,n}» Without the last state.

f_is_drifting: Logical. Passing down from the arguments. Specifies if f is drifting or not.
p_is_drifting : Logical. Passing down from the arguments. Specifies if p is drifting or not.
Model : Character. Possible values:

— "Model_1": Both p and f are drifting.
"Model_2" : pis drifting and f is not drifting.

— "Model_3": f is drifting and p is not drifting.

A_i : Numerical Matrix. Represents the polynomials A4;(t) with degree d that are used for
solving the system M J = P. Used for the methods defined for the object. Not printed when
viewing the object.

References

V. S. Barbu, N. Limnios. (2008). semi-Markov Chains and Hidden semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

Vergne, N. (2008). Drifting Markov models with Polynomial Drift and Applications to DNA Se-
quences. Statistical Applications in Genetics Molecular Biology 7 (1).

Barbu V. S., Vergne, N. (2019). Reliability and survival analysis for drifting Markov models: mod-
eling and estimation. Methodology and Computing in Applied Probability, 21(4), 1407-1429.

See Also

Methods applied to this object: simulate.dsmm, get_kernel.

For the parametric drifting semi-Markov model specification: parametric_dsmm.

For the theoretical background of drifting semi-Markov models: dsmmR.

Examples

# Setup.

states <- c("AA", "AC", "CC")
s <- length(states)

d<-2

k_max <- 3

#

# Defining non-parametric drifting semi-Markov models.
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# ‘p_dist‘ has dimensions of: (s, s, d + 1).
# Sums over v must be 1 for all uand i =90, ..., d.
p_dist_1 <- matrix(c(0, 0.1, 0.9,
0.5, 9, 0.5,
0.3, 9.7, 0),
ncol = s, byrow = TRUE)
p_dist_2 <- matrix(c(0o,
0.7,
0.6,
ncol =

0.6, 0.4,
0, 0.3,
0.4, 0),
s, byrow = TRUE)
p_dist_3 <- matrix(c(0,
0.6,
0.7,
ncol = TRUE)
# Get ‘p_dist‘ as an array of p_dist_1, p_dist_2 and p_dist_3.
p_dist <- array(c(p_dist_1, p_dist_2, p_dist_3),
dim = c(s, s, d + 1))

# ‘f_dist‘ has dimensions of: (s, s, k_max, d + 1).
# First f distribution. Dimensions: (s, s, k_max).
# Sums over 1 must be 1, for every u, vand i =0, ..., d.
f_dist_1_1_1 <- matrix(c(o, 0.2, 0.7,
0.3, 0, 0.4,
0.2, 0.8, 0),

’
ncol =

f_dist_1_1_2 <- matrix(c(o,
0.2,
0.1,
ncol =

f_dist_1_1_3 <- matrix(c(o,
0.5,
0.7,
ncol =
# Get f_dist_1

s, byrow = TRUE)
0.3, 0.2,
0, 0.5,
0.15, 0),
s, byrow = TRUE)
0.5, 0.1,
0, 0.1,
0.05, 0),
s

, byrow = TRUE)

f_dist_1 <- array(c(f_dist_1_1_1, f_dist_1_1_2, f_dist_1_1_3),

dim =

c(s, s, k_max))

# Second f distribution. Dimensions: (s, s, k_max)

f_dist_2_1_1 <- matrix(c(o,
0.3,
0.2,
ncol =

f_dist_2_1_2 <- matrix(c(o,
0.4,
0.3,
ncol =

1/3, 0.4,
0, 0.4,
0.1, 0),
s, byrow = TRUE)
1/3, 0.4,
o, 0.2,
0.4, 0),
s, byrow = TRUE)
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f_dist_2_1_3 <- matrix(c(o, 1/3, 0.2,
0.3, 0, 0.4,
0.5, 0.5, 0),

ncol = s, byrow = TRUE)

# Get f_dist_2

f_dist_2 <- array(c(f_dist_2_1_1, f_dist_2_1 2, f_dist_2_1_3),

dim = c(s, s, k_max))

# Third f distribution. Dimensions: (s, s, k_max)

f_dist_3_1_1 <- matrix(c(o, 0.3, 0.3,
0.3, 0, 0.5,
0.05, 0.1, @),

ncol = s, byrow = TRUE)

f_dist_3_1_2 <- matrix(c(o, 0.2, 0.6,
0.3, 9, 0.35,
9.9, 0.2, 0),
ncol = s, byrow = TRUE)
f_dist_3_1_3 <- matrix(c(o, 0.5, 0.1,
0.4, 0, 0.15,
0.05, 0.7, 0),

ncol = s, byrow = TRUE)

# Get f_dist_3

f_dist_3 <- array(c(f_dist_3_1_1, f_dist_3_1_2, f_dist_3_1_3),

dim = c(s, s, k_max))

# Get f_dist as an array of f_dist_1, f_dist_2 and f_dist_3.
f_dist <- array(c(f_dist_1, f_dist_2, f_dist_3),
dim = c(s, s, k_max, d + 1))

obj_nonpar_model_1 <- nonparametric_dsmm(
model_size = 8000,
states = states,
initial_dist = c(0.3, 0.5, 0.2),
degree = d,
k_max = k_max,
p_dist = p_dist,
f_dist = f_dist,
p_is_drifting = TRUE,
f_is_drifting = TRUE

)

# p drifting array.
p_drift <- obj_nonpar_model_1$dist$p_drift
p_drift

nonparametric_dsmm
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# f distribution.
f_drift <- obj_nonpar_model_1$dist$f_drift
f_drift

# p_dist has the same dimensions as in Model 1: (s, s, d + 1).
p_dist_model_2 <- array(c(p_dist_1, p_dist_2, p_dist_3),
dim = c(s, s, d + 1))

# f_dist has dimensions of: (s,s,k_{max}).
f_dist_model_2 <- f_dist_2

obj_nonpar_model_2 <- nonparametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.7, 0.1, 0.2),

degree = d,
k_max = k_max,
p_dist = p_dist_model_2,

f_dist = f_dist_model_2,
p_is_drifting = TRUE,
f_is_drifting = FALSE

)

# p drifting array.
p_drift <- obj_nonpar_model_2$dist$p_drift
p_drift

# f distribution array.
f_notdrift <- obj_nonpar_model_2$dist$f_notdrift
f_notdrift

# ‘p_dist® has dimensions of: (s, s, d + 1).
p_dist_model_3 <- p_dist_3

# “f_dist‘ has the same dimensions as in Model 1: (s, s, d + 1).
f_dist_model_3 <- array(c(f_dist_1, f_dist_2, f_dist_3),
dim = c(s, s, k_max, d + 1))

29
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obj_nonpar_model_3 <- nonparametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.3, 0.4, 0.3),
degree = d,
k_max = k_max,
p_dist = p_dist_model_3,
f_dist = f_dist_model_3,
p_is_drifting = FALSE,
f_is_drifting = TRUE

)

# p distribution matrix.
p_notdrift <- obj_nonpar_model_3$dist$p_notdrift
p_notdrift

# f distribution array.
f_drift <- obj_nonpar_model_3$dist$f_drift
f_drift

#
# Using methods for non-parametric objects.
#

kernel_parametric <- get_kernel(obj = obj_nonpar_model_3)
str(kernel_parametric)

sim_seq_par <- simulate(obj_nonpar_model_3, nsim = 50)
str(sim_seq_par)

parametric_dsmm Parametric Drifting semi-Markov model specification

Description

Creates a parametric model specification for a drifting semi-Markov model. Returns an object of
class (dsmm_parametric, dsmm).

Usage

parametric_dsmm(
model_size,
states,
initial_dist,
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degree,
f_is_drifting,
p_is_drifting,

p_dist,
f_dist,
f_dist_pars

Arguments

model_size

states

initial_dist

degree

f_is_drifting
p_is_drifting
p_dist

f_dist

f_dist_pars

Positive integer that represents the size of the drifting semi-Markov model n.
It is equal to the length of a theoretical embedded Markov chain (J;)¢¢go,....n}»
without the last state.

Character vector that represents the state space E. It has length equal to s = |E|.

Numerical vector of s probabilities, that represents the initial distribution for
each state in the state space F.

Positive integer that represents the polynomial degree d for the drifting semi-
Markov model.

Logical. Specifies if f is drifting or not.
Logical. Specifies if p is drifting or not.

Numerical array, that represents the probabilities of the transition matrix p of
the embedded Markov chain (Jt)te{o,..i,n} (it is defined the same way in the
nonparametric_dsmm function). It can be defined in two ways:

e If p is not drifting, it has dimensions of s X s.

o If p is drifting, it has dimensions of s x s x (d + 1) (see more in Details,
Defined Arguments.)

Character array, that represents the discrete sojourn time distribution f of our
choice. NA is allowed for state transitions that we do not wish to have a so-
journ time distribution (e.g. all state transition to the same state should have
NA as their value). The list of possible values is: ["unif”, "geom”, "pois”,
"dweibull”, "nbinom”, NAJ. It can be defined in two ways:

* If f is not drifting, it has dimensions of s x s.

o If f is drifting, it has dimensions of s x s x (d + 1) (see more in Details,
Defined Arguments.)

Numerical array, that represents the parameters of the sojourn time distributions
given in f_dist. NA is allowed, in the case that the distribution of our choice
does not require a parameter. It can be defined in two ways:

« If f is not drifting, it has dimensions of s X s x 2, specifying two possible
parameters required for the discrete distributions.

o If f is drifting, it has dimensions of s x s x 2 x (d+ 1), specifying two pos-
sible parameters required for the discrete distributions, but for every single
one of the? = 0, .. ., d sojourn time distributions f i that are required. (see
more in Details, Defined Arguments.)
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Details

Defined Arguments

For the parametric case, we explicitly define:

1. The transition matrix of the embedded Markov chain (J;);cqo,...,n}» given in the attribute
p_dist:

« If p is not drifting, it contains the values:
p(u,v),Yu,v € E,

given in an array with dimensions of s x s, where the first dimension corresponds to the
previous state v and the second dimension corresponds to the current state v.

« If pis drifting, for i € {0, ..., d}, it contains the values:

pi(u,v),YVu,v € E,

%
given in an array with dimensions of s x s x (d+1), where the first and second dimensions
are defined as in the non-drifting case, and the third dimension corresponds to the d + 1
different matrices p i

2. The conditional sojourn time distribution, given in the attribute f_dist:

« If f is not drifting, it contains the discrete distribution names (as characters or NA), given
in an array with dimensions of s x s, where the first dimension corresponds to the previous
state u, the second dimension corresponds to the current state v.

o If f is drifting, it contains the discrete distribution names (as characters or NA) given
in an array with dimensions of s x s x (d + 1), where the first and second dimensions
are defined as in the non-drifting case, and the third dimension corresponds to the d + 1
different arrays f i

3. The conditional sojourn time distribution parameters, given in the attribute f_dist_pars:

 If f is not drifting, it contains the numerical values (or NA) of the corresponding distri-
butions defined in f_dist, given in an array with dimensions of s x s, where the first
dimension corresponds to the previous state u, the second dimension corresponds to the
current state v.

e If f is drifting, it contains the numerical values (or NA) of the corresponding distributions
defined in f_dist, given in an array with dimensions of s X s x (d + 1), where the first
and second dimensions are defined as in the non-drifting case, and the third dimension
corresponds to the d + 1 different arrays f% .

Sojourn time distributions
In this package, the available distributions for the modeling of the conditional sojourn times, of the
drifting semi-Markov model, used through the argument f_dist, are the following:

¢ Uniform (n):

f(z) =1/n,forx =1,2,...,n, where n is a positive integer. This can be specified through
the following:

— f_dist ="unif”
— f_dist_pars = (n, NA) (n as defined here).
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* Geometric (p):
z) = p(l —p)* L forx =1,2,..., where p € (0,1) is the probability of success. This
f(@) = p( p y
can be specified through the following:
— f_dist ="geom”
— f_dist_pars = (p, NA) (p as defined here).
* Poisson (A):
flx) = %, forx = 1,2,..., where A > 0. This can be specified through the
following:
— f_dist ="pois"
— f_dist_pars = (), NA)
* Negative binomial («, p):
x) = F('L"‘:l),po‘ 1—p)* L forz = 1,2,..., where I is the Gamma function, o €
T'(a)(z—1)!
(0, +00) is the parameter describing the target for number of successful trials, or the dispersion
parameter (the shape parameter of the gamma mixing distribution). p is the probability of
success, 0 < p < 1.
— f_dist ="nbinom”
— f_dist_pars = («, p) (p as defined here)
* Discrete Weibull of type 1 (g, 5):

flz) = q(””_l)ﬁ — qwﬁ, forx = 1,2,..., with ¢ € (0, 1) is the first parameter (probability)
and § € (0, +00) is the second parameter. This can be specified through the following:

— f_dist ="dweibull”

— f_dist_pars =(q, 3) (¢ as defined here)

From these discrete distributions, by using "dweibull”, "nbinom” we require two parameters. It’s
for this reason that the attribute f_dist_pars is an array of dimensions s X s x 2 if f is not drifting
ors x s x2x (d+1)if f is drifting.

Value

Returns an object of the S3 class dsmm_parametric, dsmm. It has the following attributes:

e dist : List. Contains 3 arrays, passing down from the arguments:
— p_drift or p_notdrift, corresponding to whether the defined p transition matrix is
drifting or not.

— f_drift_parametric or f_notdrift_parametric, corresponding to whether the de-
fined f sojourn time distribution is drifting or not.

— f_drift_parameters or f_notdrift_parameters, which are the defined f sojourn
time distribution parameters, depending on whether f is drifting or not.

* initial_dist : Numerical vector. Passing down from the arguments. It contains the initial
distribution of the drifting semi-Markov model.

* states : Character vector. Passing down from the arguments. It contains the state space E.

* s : Positive integer. It contains the number of states in the state space, s = |E
in the attribute states.

, which is given
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degree : Positive integer. Passing down from the arguments. It contains the polynomial
degree d considered for the drifting of the model.

model_size : Positive integer. Passing down from the arguments. It contains the size of the
drifting semi-Markov model n, which represents the length of the embedded Markov chain
(Jt)teqo,...,n}» Without the last state.

f_is_drifting: Logical. Passing down from the arguments. Specifies if f is drifting or not.
p_is_drifting : Logical. Passing down from the arguments. Specifies if p is drifting or not.
Model : Character. Possible values:

— "Model_1" : Both p and f are drifting.
— "Model_2" : pis drifting and f is not drifting.

"Model_3": f is drifting and p is not drifting.

A_i : Numerical matrix. Represents the polynomials A;(¢) with degree d that are used for
solving the system M J = P. Used for the methods defined for the object. Not printed when
viewing the object.

References
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vol. 191, Springer.
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Barbu V. S., Vergne, N. (2019). Reliability and survival analysis for drifting Markov models: mod-
eling and estimation. Methodology and Computing in Applied Probability, 21(4), 1407-1429.

T. Nakagawa and S. Osaki. (1975). The discrete Weibull distribution. IEEE Transactions on Relia-
bility, R-24, 300-301.

See Also

Methods applied to this object: simulate.dsmm, get_kernel.

For the non-parametric drifting semi-Markov model specification: nonparametric_dsmm.

For the theoretical background of drifting semi-Markov models: dsmmR.

Examples

# We can also define states in a flexible way, including spaces.

states <- c("Dollar $", " /1'2'3/ ", " ZETA ", "O_M_E_G_A")

s <- length(states)

d<-1

#

# Defining parametric drifting semi-Markov models.

#

# __________________________________________________________________________

# Defining the drifting distributions for Model 1.
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# ‘p_dist® has dimensions of: (s, s, d + 1).
# Sums over v must be 1 for all uand i =90, ..., d.

# First matrix.

p_dist_1 <- matrix(c(0, 0.1, 0.4, 0.5,
0.5, 0, 0.3, 0.2,
0.3, 0.4, 0, 0.3,
0.8, 0.1, 0.1, @),
ncol = s, byrow = TRUE)

# Second matrix.

p_dist_2 <- matrix(c(0, 0.3, 0.6, 0.1,
0.3, 0, 0.4, 0.3,
0.5, 0.3, 0, 0.2,
0.2, 0.3, 0.5, ),
ncol = s, byrow = TRUE)

# get ‘p_dist’ as an array of p_dist_1 and p_dist_2.
p_dist_model_1 <- array(c(p_dist_1, p_dist_2), dim = c(s, s, d + 1))

# ‘f_dist® has dimensions of: (s, s, d + 1).
# First matrix.

f_dist_1 <- matrix(c(NA, "unif”, "dweibull”, "nbinom”,
"geom", NA, "pois”, "dweibull”,
"dweibull”, "pois"”, NA, "geom”,
"pois”, NA, "geom"”, NA),

nrow = s, ncol = s, byrow = TRUE)

# Second matrix.

f_dist_2 <- matrix(c(NA, "pois"”, "geom”, "nbinom"”,
"geom”, NA, "pois”, "dweibull”,
"unif”, "geom", NA, "geom”,
"oois”, "pois”, "geom”, NA),

nrow = s, ncol = s, byrow = TRUE)

# get ‘f_dist® as an array of ‘f_dist_1‘ and ‘f_dist_2"
f_dist_model_1 <- array(c(f_dist_1, f_dist_2), dim = c(s, s, d + 1))

# ‘“f_dist_pars‘ has dimensions of: (s, s, 2, d + 1).
# First array of coefficients, corresponding to ‘f_dist_1".
# First matrix.
f_dist_1_pars_1 <- matrix(c(NA, 5, 0.4, 4,

0.7, NA, 5, 0.6,

0.2, 3, NA, 0.6,

4, NA, 0.4, NA),

nrow = s, ncol = s, byrow = TRUE)

# Second matrix.
f_dist_1_pars_2 <- matrix(c(NA, NA, 0.2, 0.6,
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NA, NA, NA, 0.8,
0.6, NA, NA, NA,
NA, NA, NA, NA),
nrow = s, ncol = s, byrow = TRUE)

# Second array of coefficients, corresponding to ‘f_dist_2".
# First matrix.

f_dist_2_pars_1 <- matrix(c(NA, 6, 0.4, 3,
0.7, NA, 2, 0.5,
3, 0.6, NA, 0.7

6, 0.2, 0.7, NA),
nrow = s, ncol = s, byrow = TRUE)
# Second matrix.
f_dist_2_pars_2 <- matrix(c(NA, NA, NA, 0.6,
NA, NA, NA, 0.8,
NA, NA, NA, NA,
NA, NA, NA, NA),
nrow = s, ncol = s, byrow = TRUE)

# Get ‘f_dist_pars".

f_dist_pars_model_1 <- array(c(f_dist_1_pars_1, f_dist_1_pars_2,
f_dist_2_pars_1, f_dist_2_pars_2),

dim = c(s, s, 2, d + 1))

obj_par_model_1 <- parametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.8, 0.1, 0.1, @),
degree = d,
p_dist = p_dist_model_1,
f_dist = f_dist_model_1,
f_dist_pars = f_dist_pars_model_1,
p_is_drifting = TRUE,
f_is_drifting = TRUE

)

# p drifting array.
p_drift <- obj_par_model_1$dist$p_drift
p_drift

# f distribution.
f_dist_drift <- obj_par_model_1$dist$f_drift_parametric
f_dist_drift

# parameters for the f distribution.
f_dist_pars_drift <- obj_par_model_1$dist$f_drift_parameters
f_dist_pars_drift

parametric_dsmm
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# Defining Model 2 - p is drifting, f is not drifting.

# ‘p_dist® has the same dimensions as in Model 1: (s, s, d + 1).
p_dist_model_2 <- array(c(p_dist_1, p_dist_2), dim = c(s, s, d + 1))

# “f_dist‘ has dimensions of: (s, s).

f_dist_model_2 <- matrix(c( NA, "pois"”, NA, "nbinom”,
"geom”, NA, "geom”, "dweibull”,
"unif", "geom”, NA, "geom"”

"nbinom”, "unif"”, "dweibull"”, NA),
nrow = s, ncol = s, byrow = TRUE)

# ‘f_dist_pars‘ has dimensions of: (s, s, 2),
# corresponding to ‘f_dist_model_2".

# First matrix.
f_dist_pars_1_model_2 <- matrix(c(NA, 0.2, NA, 3,
0.2, NA, 0.2, 0.5,
3, 0.4, NA, 0.7,
2, 3, 0.7, NA),
nrow = s, ncol = s, byrow = TRUE)

# Second matrix.
f_dist_pars_2_model_2 <- matrix(c(NA, NA, NA, 0.6,
NA, NA, NA, 0.8,
NA, NA, NA, NA,
0.2, NA, 0.3, NA),
nrow = s, ncol = s, byrow = TRUE)

# Get ‘f_dist_pars".
f_dist_pars_model_2 <- array(c(f_dist_pars_1_model_2,
f_dist_pars_2_model_2),
dim = c(s, s, 2))

obj_par_model_2 <- parametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.8, 0.1, 0.1, 9),
degree = d,
p_dist = p_dist_model_2,
f_dist = f_dist_model_2,
f_dist_pars = f_dist_pars_model_2,
p_is_drifting = TRUE,
f_is_drifting = FALSE
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# p drifting array.
p_drift <- obj_par_model_2$dist$p_drift
p_drift

# f distribution.
f_dist_notdrift <- obj_par_model_2$dist$f_notdrift_parametric
f_dist_notdrift

# parameters for the f distribution.

f_dist_pars_notdrift <- obj_par_model_2$dist$f_notdrift_parameters
f_dist_pars_notdrift

# ‘p_dist® has dimensions of: (s, s).

p_dist_model_3 <- matrix(c(@, 0.1, 0.3, 0.6,
0.4, 0, 0.1, 0.5,
0.4, 0.3, 0, 0.3,
0.9, 0.01, 90.09, 0),
ncol = s, byrow = TRUE)

# “f_dist‘ has the same dimensions as in Model 1: (s, s, d + 1).
f_dist_model_3 <- array(c(f_dist_1, f_dist_2), dim = c(s, s, d + 1))

# “f_dist_pars' has the same dimensions as in Model 1: (s, s, 2, d + 1).

f_dist_pars_model_3 <- array(c(f_dist_1_pars_1, f_dist_1_pars_2,
f_dist_2_pars_1, f_dist_2_pars_2),
dim = c(s, s, 2, d + 1))

obj_par_model_3 <- parametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.3, 0.2, 0.2, 0.3),
degree = d,
p_dist = p_dist_model_3,
f_dist = f_dist_model_3,
f_dist_pars = f_dist_pars_model_3,
p_is_drifting = FALSE,
f_is_drifting = TRUE

)

# p drifting array.

p_notdrift <- obj_par_model_3$dist$p_notdrift
p_notdrift

# f distribution.

parametric_dsmm
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f_dist_drift <- obj_par_model_3$dist$f_drift_parametric
f_dist_drift

# parameters for the f distribution.
f_dist_pars_drift <- obj_par_model_3$dist$f_drift_parameters
f_dist_pars_drift

#

# Parametric estimation using methods corresponding to an object
# which inherits from the class ‘dsmm_parametric®.

#

### Comments
### 1. Using a larger ‘klim‘ and a larger ‘model_size‘ will increase the

it accuracy of the model, with the need of larger memory requirements
#iHt and computational cost.

### 2. For the parametric estimation it is recommended to use a common set
i of distributions while only the parameters are drifting. This results
it in higher accuracy.

# ___________________________________________________________________________
# Defining the distributions for Model 1 - both p and f are drifting.

# ___________________________________________________________________________

# ‘p_dist® has dimensions of: (s, s, d + 1).
# First matrix.

p_dist_1 <- matrix(c(0, 0.2, 0.4, 0.4,
0.5, 0, 0.3, 0.2,
0.3, 0.4, 0, 0.3,
0.5, 0.3, 0.2, 0),
ncol = s, byrow = TRUE)

# Second matrix.

p_dist_2 <- matrix(c(0, 0.3, 0.5, 0.2,
0.3, 0, 0.4, 0.3,
0.5, 0.3, 0, 0.2,
0.2, 0.4, 0.4, 0),
ncol = s, byrow = TRUE)

# get ‘p_dist’ as an array of p_dist_1 and p_dist_2.
p_dist_model_1 <- array(c(p_dist_1, p_dist_2), dim = c(s, s, d + 1))

# ‘f_dist® has dimensions of: (s, s, d + 1).
# We will use the same sojourn time distributions.

f_dist_1 <- matrix(c( NA, "unif”, "dweibull”, "nbinom”,
"geom", NA, "pois”, "dweibull”,
"dweibull”, "pois”, NA, "geom",
"pois”, 'nbinom', "geom", NA),

nrow = s, ncol = s, byrow = TRUE)

# get ‘f_dist®
f_dist_model_1 <- array(f_dist_1, dim = c(s, s, d + 1))
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# ‘f_dist_pars‘ has dimensions of: (s, s, 2, d + 1).
# First array of coefficients, corresponding to “f_dist_1°.
# First matrix.

f_dist_1_pars_1 <- matrix(c(NA, 7, 0.4, 4,

0.7, NA, 5, 0.6,
0.2, 3, NA, 0.6,
4, 4, 0.4, NA),
nrow = s, ncol = s, byrow =

# Second matrix.
f_dist_1_pars_2 <- matrix(c(NA, NA, 0.2, 0.6,

# Second array of coefficients, corresponding to ‘f_dist_2".

NA, NA, NA, 0.8,
0.6, NA, NA, NA,
NA, ©.3, NA, NA),
nrow = s, ncol = s, byrow =

# First matrix.

f_dist_2_pars_1 <- matrix(c(NA, 6, 0.5,

3,
0.5, NA, 4, 0.5,
0.4, 5, NA, 0.7,
6, 5, 0.7, NA),
nrow = s, ncol = s, byrow =

# Second matrix.
f_dist_2_pars_2 <- matrix(c(NA, NA, 0.4, 0.5,

NA, NA, NA, 0.6,
0.5, NA, NA, NA,
NA, 0.4, NA, NA),
nrow = s, ncol = s, byrow =

# Get ‘f_dist_pars®.

f_dist_pars_model_1 <- array(c(f_dist_1_pars_1, f_dist_1_pars_2,
f_dist_2_pars_1, f_dist_2_pars_2),

dim = ¢c(s, s, 2, d + 1))

obj_par_model_1 <- parametric_dsmm(

)

model_size = 4000,

states = states,

initial_dist = c(0.8, 0.1, 0.1, @),
degree = d,

p_dist = p_dist_model_1,

f_dist = f_dist_model_1,
f_dist_pars = f_dist_pars_model_1,
p_is_drifting = TRUE,

f_is_drifting = TRUE

cat("The object has class of (",

paste@(class(obj_par_model_1),
collapse ="', '), ").")

TRUE)

TRUE)

TRUE)

TRUE)

parametric_dsmm
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# A larger klim will lead to an increase in accuracy.
klim <- 20
sim_seq <- simulate(obj_par_model_1, klim = klim, seed = 1)

fit_par_modell <- fit_dsmm(sequence = sim_seq,
states = states,
degree = d,
f_is_drifting = TRUE,
p_is_drifting = TRUE,
estimation = 'parametric',
f_dist = f_dist_model_1)

cat("The object has class of (",
paste@(class(fit_par_modell),
collapse ="', '), ").")

cat("\nThe estimated parameters are:\n")
fit_par_model1$dist$f_drift_parameters

simulate.dsmm Simulate a sequence under a drifting semi-Markov kernel.

Description

Generic function that simulates a number of states nsim under the rule of a drifting semi-Markov
kernel, which is retrieved from the object obj, which in turn inherits from the S3 class dsmm.

Usage

## S3 method for class 'dsmm'

simulate(object, nsim = NULL, seed = NULL, seq_length = NULL, klim = 100, ...)
Arguments

object An object of S3 class dsmm, dsmm_fit_nonparametric, dsmm_nonparametric,

dsmm_fit_parametric or dsmm_parametric.
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nsim

seed

seqg_length

klim

Value

simulate.dsmm

Optional. An integer specifying the number of simulations to be made from the
drifting semi-Markov kernel. The maximum value of nsim is the model size
which is specified in obj, which is also the default value. We define a special
case for nsim = @, where only the initial distribution is considered and only the
simulation of its sojourn time will be made, without the next state.

Optional. An integer specifying the initialization of the random number genera-
tor.

Optional. A positive integer that will ensure the simulated sequence will not
have a total length greater than seq_length (however, it is possible for the total
length to be less than seq_length).

Optional. Positive integer. Passed down to get_kernel for the parametric ob-
ject, with class dsmm_parametric. Default value is 100.

Optional. Attributes passed down from the simulate method.

A character vector based on nsim simulations, with a maximum length of seq_length.

See Also

About random number generation in R: RNG.

Fitting a model through a sequence from this function: fit_dsmm.

For the theoretical background of drifting semi-Markov models: dsmmR.

Examples

# Setup.

seq <- create_sequence("DNA", len = 1000)
states <- sort(unique(seq))

d<-1

obj_model_3 <- fit_dsmm(sequence = seq,

states = states,
degree = d,
f_is_drifting = TRUE,
p_is_drifting = FALSE)

# Using the method ‘simulate.dsmm()".

simulated_seq <- simulate(obj_model_3, seed = 1)

short_sim <- simulate(obj = obj_model_3, nsim = 10, seed = 1)
cut_sim <- simulate(obj = obj_model_3, seq_length = 10, seed = 1)
str(simulated_seq)

str(short_sim)
str(cut_sim)
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