CRAN Package Check Results for Package GNE

Last updated on 2023-03-31 07:53:27 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.99-4 9.80 85.60 95.40 ERROR
r-devel-linux-x86_64-debian-gcc 0.99-4 8.59 65.00 73.59 ERROR
r-devel-linux-x86_64-fedora-clang 0.99-5 140.96 OK
r-devel-linux-x86_64-fedora-gcc 0.99-5 154.66 OK
r-devel-windows-x86_64 0.99-4 40.00 0.00 40.00 ERROR
r-patched-linux-x86_64 0.99-4 12.95 82.19 95.14 ERROR
r-release-linux-x86_64 0.99-4 9.39 103.04 112.43 OK
r-release-macos-arm64 0.99-4 46.00 OK
r-release-macos-x86_64 0.99-4 58.00 OK
r-release-windows-x86_64 0.99-4 50.00 173.00 223.00 OK
r-oldrel-macos-arm64 0.99-4 46.00 OK
r-oldrel-macos-x86_64 0.99-4 58.00 OK
r-oldrel-windows-ix86+x86_64 0.99-4 22.00 180.00 202.00 OK

Check Details

Version: 0.99-4
Check: examples
Result: ERROR
    Running examples in ‘GNE-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: GNE.nseq
    > ### Title: Non smooth equation reformulation of the GNE problem.
    > ### Aliases: GNE.nseq
    > ### Keywords: nonlinear optimize
    >
    > ### ** Examples
    >
    >
    >
    > #-------------------------------------------------------------------------------
    > # (1) Example 5 of von Facchinei et al. (2007)
    > #-------------------------------------------------------------------------------
    >
    > dimx <- c(1, 1)
    > #Gr_x_j O_i(x)
    > grobj <- function(x, i, j)
    + {
    + if(i == 1)
    + res <- c(2*(x[1]-1), 0)
    + if(i == 2)
    + res <- c(0, 2*(x[2]-1/2))
    + res[j]
    + }
    > #Gr_x_k Gr_x_j O_i(x)
    > heobj <- function(x, i, j, k)
    + 2 * (i == j && j == k)
    >
    > dimlam <- c(1, 1)
    > #constraint function g_i(x)
    > g <- function(x, i)
    + sum(x[1:2]) - 1
    > #Gr_x_j g_i(x)
    > grg <- function(x, i, j)
    + 1
    > #Gr_x_k Gr_x_j g_i(x)
    > heg <- function(x, i, j, k)
    + 0
    >
    >
    >
    > #true value is (3/4, 1/4, 1/2, 1/2)
    >
    > z0 <- rep(0, sum(dimx)+sum(dimlam))
    >
    > funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
    Error in funSSR(z0, dimx, dimlam, grobj = grobj, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64

Version: 0.99-4
Check: tests
Result: ERROR
     Running ‘CER-funCER-Rcode-constr.R’ [1s/1s]
     Running ‘CER-funCER-Rcode-constrjoint.R’ [1s/1s]
     Running ‘CER-funCER-Rcode-joint.R’ [1s/1s]
     Running ‘GNEceq-examples.R’ [1s/1s]
     Running ‘GNEnseq-examples.R’ [0s/1s]
     Running ‘NIR-func-Rcode.R’ [6s/7s]
     Running ‘NIRandVIPexample.R’ [1s/2s]
     Running ‘SSR-Rcode-funSSRcheck-constrjoint.R’ [1s/1s]
     Running ‘SSR-funSSR-Rcode-constr.R’ [1s/1s]
     Running ‘SSR-funSSR-funSSRcheck-constr.R’ [1s/1s]
     Running ‘SSR-funSSR-funSSRcheck-constrjoint.R’ [1s/1s]
     Running ‘SSR-testarg.R’ [0s/1s]
     Running ‘complfunc-3Dplot.R’ [1s/1s]
     Running ‘complfunc-funcFB.R’ [0s/1s]
     Running ‘complfunc-limitgraph.R’ [1s/1s]
     Running ‘sensi-analysis-duopoly.R’ [0s/1s]
     Running ‘sensi-analysis-genduopoly.R’ [6s/8s]
     Running ‘sensi-analysis-riverbasinpollution.R’ [1s/1s]
     Running ‘util-testfunc.R’ [0s/1s]
    Running the tests in ‘tests/CER-funCER-Rcode-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + sum(dimw))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > w <- z[(n+m+1):(n+m+m)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 17
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/CER-funCER-Rcode-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimlam) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 23
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/CER-funCER-Rcode-joint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > lam <- NULL
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 0 0 0
     [1] 13
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/GNEnseq-examples.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > itermax <- 10
     >
     > #-------------------------------------------------------------------------------
     > # (1) Example 5 of von Facchinei et al. (2007)
     > #-------------------------------------------------------------------------------
     >
     > dimx <- c(1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j)
     + {
     + if(i == 1)
     + res <- c(2*(x[1]-1), 0)
     + if(i == 2)
     + res <- c(0, 2*(x[2]-1/2))
     + res[j]
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k)
     + 2 * (i == j && j == k)
     >
     > dimlam <- c(1, 1)
     > #constraint function g_i(x)
     > g <- function(x, i)
     + sum(x[1:2]) - 1
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j)
     + 1
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k)
     + 0
     >
     >
     >
     > #true value is (3/4, 1/4, 1/2, 1/2)
     >
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
     Error in funSSR(z0, dimx, dimlam, grobj = grobj, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-Rcode-funSSRcheck-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > g(z, 1)
     [1] 111.5235
     > g(z, 2)
     [1] -3.020231 9.389554
     > g(z, 3)
     [1] 23.98399 89.38955
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-Rcode-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-funSSRcheck-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-funSSRcheck-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB(-g(x, 1), lam[1]),
     + phiFB( -g(x, 2)[1], lam[2]),
     + phiFB( -g(x, 2)[2], lam[3]),
     + phiFB( -g(x, 3)[1], lam[4]),
     + phiFB( -g(x, 3)[2], lam[5]),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 4.1443754 4.1443754
     [2,] 5.2701960 5.2701960
     [3,] 15.6108299 15.6108299
     [4,] -212.2245786 -212.2245786
     [5,] 0.9805729 0.9805729
     [6,] 2.8948524 2.8948524
     [7,] 10.4253274 10.4253274
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] 121.9146274 121.9146274
     [2,] -1.2372614 -1.2372614
     [3,] 26.2527589 26.2527589
     [4,] 15.8212629 15.8212629
     [5,] 185.3843714 185.3843714
     [6,] -0.6581436 -0.6581436
     [7,] 12.7100869 12.7100869
     [8,] 17.2134937 17.2134937
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     > z <- rexp(sum(dimx) + dimmu)
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, grobj=grfullob, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 2.600949 2.600949
     [2,] 10.914636 10.914636
     [3,] 22.816303 22.816303
     [4,] -116.390869 -116.390869
     [5,] 203.325163 203.325163
     [6,] 188.066239 188.066239
     [7,] 24.824489 24.824489
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] 0.3784036 0.3784036
     [2,] 42.1384329 42.1384329
     [3,] 119.5852020 119.5852020
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     >
     >
     >
     >
     > # (4) compute Jac Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     >
     > resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g,
     + grconstr=grfullg, heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB,
     + joint=h, grjoint=grh, hejoint=heh, dimmu=dimmu)
     Error in jacSSR(z, dimx, dimlam, heobj = hefullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-testarg.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > try(funSSR("x"))
     Error in funSSR("x") : argument "dimx" is missing, with no default
     >
     > try(funSSR(rep(1, 2) , 1, grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     SSR: incompatible dimension for dimlam, dimx, dimmu.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     missing compl argument.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x, compl=phiFB))
     Error in grobj(z, i, j) : unused arguments (i, j)
     Error when calling function, below the try output.
     [1] "Error in grobj(z, i, j) : unused arguments (i, j)\n"
     attr(,"class")
     [1] "try-error"
     attr(,"condition")
     <simpleError in grobj(z, i, j): unused arguments (i, j)>
     Arguments are:
     [[1]]
     [1] 1 1
    
     [[2]]
     [1] 1
    
     [[3]]
     [1] 1
    
     [[4]]
     list()
    
     Error in testfunc(grobjfinal, z, arg = arggrobj, echo = echo, errmess = str) :
     the call to grobj(z, 1, 1, arggrobj) does not work. arguments are x .
     >
     > funSSR(rep(1, 2), rep(1, 2), grobj=function(x, i, j) x, compl=phiFB)
     Error in funSSR(rep(1, 2), rep(1, 2), grobj = function(x, i, j) x, compl = phiFB) :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/sensi-analysis-riverbasinpollution.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > #-------------------------------------------------------------------------------
     > # (3) River basin pollution game of Krawczyk and Stanislav Uryasev (2000)
     > #-------------------------------------------------------------------------------
     >
     > myarg0 <- list(
     + C = cbind(c(.1, .12, .15), c(.01, .05, .01)),
     + U = cbind(c(6.5, 5, 5.5), c(4.583, 6.25, 3.75)),
     + K = c(100, 100),
     + E = c(.5, .25, .75),
     + D = c(3, .01)
     + )
     >
     >
     >
     > dimx <- c(1, 1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j, arg)
     + {
     + dij <- 1*(i == j)
     + res <- -(-arg$D[2] - arg$C[i, 2]*dij) * x[i]
     + res - (arg$D[1] - arg$D[2]*sum(x[1:3]) - arg$C[i, 1] - arg$C[i, 2]*x[i]) * dij
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k, arg)
     + {
     + dij <- 1*(i == j)
     + dik <- 1*(i == k)
     +
     + arg$D[2] * dik + arg$D[2] * dij + 2 * arg$C[i, 2] * dij * dik
     + }
     >
     > dimlam <- c(2, 2, 2)
     > #g_i(x)
     > g <- function(x, i, arg)
     + c(sum(arg$U[, 1] * arg$E * x[1:3]) - arg$K[1],
     + sum(arg$U[, 2] * arg$E * x[1:3]) - arg$K[2],
     + -x[1],
     + -x[2],
     + -x[3])
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j, arg)
     + c(arg$U[j, 1] * arg$E[j],
     + arg$U[j, 2] * arg$E[j],
     + -1*(i ==j),
     + -1*(i ==j),
     + -1*(i ==j))
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k, arg)
     + c(0, 0, 0, 0, 0)
     >
     > #true value around (21.146, 16.027, 2.724, 0.574, 0.000)
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > getNE <- function(x, control=list(maxit=100, trace=0), check=TRUE)
     + {
     + res <- sapply(1:NROW(x), function(i)
     + {
     + myarg <- list(
     + C = cbind(x[i,paste("C",1:3,sep="")], x[i,paste("C",1:3+3,sep="")]),
     + U = cbind(x[i,paste("U",1:3,sep="")], x[i,paste("U",1:3+3,sep="")]),
     + K = x[i,paste("K",1:2,sep="")],
     + E = x[i,paste("E",1:3,sep="")],
     + D = x[i,paste("D",1:2,sep="")]
     + )
     +
     + res <- GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
     + constr=g, myarg, grconstr=grg, myarg, heconstr=heg, myarg,
     + compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
     + control=control)
     +
     + if(any(res$par[1:3] < 0) && check)
     + return(rep(NA, 3))
     + else
     + return(res$par[1:3])
     + }
     + )
     + }
     >
     > n <- 10
     > Xinputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     > X2inputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     >
     > Youtputs <- t(getNE(Xinputmatrix))
     Error in if (any(res$par[1:3] < 0) && check) return(rep(NA, 3)) else return(res$par[1:3]) :
     missing value where TRUE/FALSE needed
     Calls: t -> getNE -> sapply -> lapply -> FUN
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.99-4
Check: re-building of vignette outputs
Result: ERROR
    Error(s) in re-building vignettes:
     ...
    --- re-building ‘GNE-howto.Rnw’ using Sweave
    Loading required package: alabama
    Loading required package: numDeriv
    Loading required package: nleqslv
    Loading required package: BB
    Loading required package: SQUAREM
    
    Error: processing vignette ‘GNE-howto.Rnw’ failed with diagnostics:
     chunk 6 (label = singjac)
    Error in jacSSR(z0, dimx, dimlam, heobj = heobj, myarg, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
    
    --- failed re-building ‘GNE-howto.Rnw’
    
    SUMMARY: processing the following file failed:
     ‘GNE-howto.Rnw’
    
    Error: Vignette re-building failed.
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64

Version: 0.99-4
Check: tests
Result: ERROR
     Running ‘CER-funCER-Rcode-constr.R’ [0s/1s]
     Running ‘CER-funCER-Rcode-constrjoint.R’ [0s/1s]
     Running ‘CER-funCER-Rcode-joint.R’ [0s/1s]
     Running ‘GNEceq-examples.R’ [1s/1s]
     Running ‘GNEnseq-examples.R’ [0s/1s]
     Running ‘NIR-func-Rcode.R’ [4s/6s]
     Running ‘NIRandVIPexample.R’ [1s/2s]
     Running ‘SSR-Rcode-funSSRcheck-constrjoint.R’ [0s/1s]
     Running ‘SSR-funSSR-Rcode-constr.R’ [0s/1s]
     Running ‘SSR-funSSR-funSSRcheck-constr.R’ [0s/1s]
     Running ‘SSR-funSSR-funSSRcheck-constrjoint.R’ [1s/1s]
     Running ‘SSR-testarg.R’ [0s/1s]
     Running ‘complfunc-3Dplot.R’ [1s/1s]
     Running ‘complfunc-funcFB.R’ [0s/1s]
     Running ‘complfunc-limitgraph.R’ [1s/1s]
     Running ‘sensi-analysis-duopoly.R’ [0s/1s]
     Running ‘sensi-analysis-genduopoly.R’ [5s/7s]
     Running ‘sensi-analysis-riverbasinpollution.R’ [0s/1s]
     Running ‘util-testfunc.R’ [0s/1s]
    Running the tests in ‘tests/CER-funCER-Rcode-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + sum(dimw))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > w <- z[(n+m+1):(n+m+m)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 17
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/CER-funCER-Rcode-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimlam) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 23
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/CER-funCER-Rcode-joint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > lam <- NULL
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 0 0 0
     [1] 13
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/GNEnseq-examples.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > itermax <- 10
     >
     > #-------------------------------------------------------------------------------
     > # (1) Example 5 of von Facchinei et al. (2007)
     > #-------------------------------------------------------------------------------
     >
     > dimx <- c(1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j)
     + {
     + if(i == 1)
     + res <- c(2*(x[1]-1), 0)
     + if(i == 2)
     + res <- c(0, 2*(x[2]-1/2))
     + res[j]
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k)
     + 2 * (i == j && j == k)
     >
     > dimlam <- c(1, 1)
     > #constraint function g_i(x)
     > g <- function(x, i)
     + sum(x[1:2]) - 1
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j)
     + 1
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k)
     + 0
     >
     >
     >
     > #true value is (3/4, 1/4, 1/2, 1/2)
     >
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
     Error in funSSR(z0, dimx, dimlam, grobj = grobj, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-Rcode-funSSRcheck-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > g(z, 1)
     [1] 3.922292
     > g(z, 2)
     [1] -6.800669 12.807627
     > g(z, 3)
     [1] 17.79068 92.80763
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-Rcode-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-funSSRcheck-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-funSSRcheck-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB(-g(x, 1), lam[1]),
     + phiFB( -g(x, 2)[1], lam[2]),
     + phiFB( -g(x, 2)[2], lam[3]),
     + phiFB( -g(x, 3)[1], lam[4]),
     + phiFB( -g(x, 3)[2], lam[5]),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 14.922994 14.922994
     [2,] 11.976890 11.976890
     [3,] 23.929718 23.929718
     [4,] -152.489643 -152.489643
     [5,] -1.881621 -1.881621
     [6,] -1.624014 -1.624014
     [7,] 6.340499 6.340499
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] 73.3204385 73.3204385
     [2,] -0.6009431 -0.6009431
     [3,] 28.1518187 28.1518187
     [4,] 12.8805374 12.8805374
     [5,] 187.3763705 187.3763705
     [6,] -0.7479029 -0.7479029
     [7,] 4.7925080 4.7925080
     [8,] 8.0802381 8.0802381
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     > z <- rexp(sum(dimx) + dimmu)
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, grobj=grfullob, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 2.7919960 2.7919960
     [2,] 10.8912000 10.8912000
     [3,] 39.8934440 39.8934440
     [4,] -78.6819596 -78.6819596
     [5,] 0.8435577 0.8435577
     [6,] 7.5942524 7.5942524
     [7,] -1.3750236 -1.3750236
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] -0.276820 -0.276820
     [2,] 7.591222 7.591222
     [3,] 7.911296 7.911296
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     >
     >
     >
     >
     > # (4) compute Jac Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     >
     > resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g,
     + grconstr=grfullg, heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB,
     + joint=h, grjoint=grh, hejoint=heh, dimmu=dimmu)
     Error in jacSSR(z, dimx, dimlam, heobj = hefullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-testarg.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > try(funSSR("x"))
     Error in funSSR("x") : argument "dimx" is missing, with no default
     >
     > try(funSSR(rep(1, 2) , 1, grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     SSR: incompatible dimension for dimlam, dimx, dimmu.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     missing compl argument.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x, compl=phiFB))
     Error in grobj(z, i, j) : unused arguments (i, j)
     Error when calling function, below the try output.
     [1] "Error in grobj(z, i, j) : unused arguments (i, j)\n"
     attr(,"class")
     [1] "try-error"
     attr(,"condition")
     <simpleError in grobj(z, i, j): unused arguments (i, j)>
     Arguments are:
     [[1]]
     [1] 1 1
    
     [[2]]
     [1] 1
    
     [[3]]
     [1] 1
    
     [[4]]
     list()
    
     Error in testfunc(grobjfinal, z, arg = arggrobj, echo = echo, errmess = str) :
     the call to grobj(z, 1, 1, arggrobj) does not work. arguments are x .
     >
     > funSSR(rep(1, 2), rep(1, 2), grobj=function(x, i, j) x, compl=phiFB)
     Error in funSSR(rep(1, 2), rep(1, 2), grobj = function(x, i, j) x, compl = phiFB) :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/sensi-analysis-riverbasinpollution.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > #-------------------------------------------------------------------------------
     > # (3) River basin pollution game of Krawczyk and Stanislav Uryasev (2000)
     > #-------------------------------------------------------------------------------
     >
     > myarg0 <- list(
     + C = cbind(c(.1, .12, .15), c(.01, .05, .01)),
     + U = cbind(c(6.5, 5, 5.5), c(4.583, 6.25, 3.75)),
     + K = c(100, 100),
     + E = c(.5, .25, .75),
     + D = c(3, .01)
     + )
     >
     >
     >
     > dimx <- c(1, 1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j, arg)
     + {
     + dij <- 1*(i == j)
     + res <- -(-arg$D[2] - arg$C[i, 2]*dij) * x[i]
     + res - (arg$D[1] - arg$D[2]*sum(x[1:3]) - arg$C[i, 1] - arg$C[i, 2]*x[i]) * dij
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k, arg)
     + {
     + dij <- 1*(i == j)
     + dik <- 1*(i == k)
     +
     + arg$D[2] * dik + arg$D[2] * dij + 2 * arg$C[i, 2] * dij * dik
     + }
     >
     > dimlam <- c(2, 2, 2)
     > #g_i(x)
     > g <- function(x, i, arg)
     + c(sum(arg$U[, 1] * arg$E * x[1:3]) - arg$K[1],
     + sum(arg$U[, 2] * arg$E * x[1:3]) - arg$K[2],
     + -x[1],
     + -x[2],
     + -x[3])
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j, arg)
     + c(arg$U[j, 1] * arg$E[j],
     + arg$U[j, 2] * arg$E[j],
     + -1*(i ==j),
     + -1*(i ==j),
     + -1*(i ==j))
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k, arg)
     + c(0, 0, 0, 0, 0)
     >
     > #true value around (21.146, 16.027, 2.724, 0.574, 0.000)
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > getNE <- function(x, control=list(maxit=100, trace=0), check=TRUE)
     + {
     + res <- sapply(1:NROW(x), function(i)
     + {
     + myarg <- list(
     + C = cbind(x[i,paste("C",1:3,sep="")], x[i,paste("C",1:3+3,sep="")]),
     + U = cbind(x[i,paste("U",1:3,sep="")], x[i,paste("U",1:3+3,sep="")]),
     + K = x[i,paste("K",1:2,sep="")],
     + E = x[i,paste("E",1:3,sep="")],
     + D = x[i,paste("D",1:2,sep="")]
     + )
     +
     + res <- GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
     + constr=g, myarg, grconstr=grg, myarg, heconstr=heg, myarg,
     + compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
     + control=control)
     +
     + if(any(res$par[1:3] < 0) && check)
     + return(rep(NA, 3))
     + else
     + return(res$par[1:3])
     + }
     + )
     + }
     >
     > n <- 10
     > Xinputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     > X2inputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     >
     > Youtputs <- t(getNE(Xinputmatrix))
     Error in if (any(res$par[1:3] < 0) && check) return(rep(NA, 3)) else return(res$par[1:3]) :
     missing value where TRUE/FALSE needed
     Calls: t -> getNE -> sapply -> lapply -> FUN
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.99-4
Check: examples
Result: ERROR
    Running examples in 'GNE-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: GNE.nseq
    > ### Title: Non smooth equation reformulation of the GNE problem.
    > ### Aliases: GNE.nseq
    > ### Keywords: nonlinear optimize
    >
    > ### ** Examples
    >
    >
    >
    > #-------------------------------------------------------------------------------
    > # (1) Example 5 of von Facchinei et al. (2007)
    > #-------------------------------------------------------------------------------
    >
    > dimx <- c(1, 1)
    > #Gr_x_j O_i(x)
    > grobj <- function(x, i, j)
    + {
    + if(i == 1)
    + res <- c(2*(x[1]-1), 0)
    + if(i == 2)
    + res <- c(0, 2*(x[2]-1/2))
    + res[j]
    + }
    > #Gr_x_k Gr_x_j O_i(x)
    > heobj <- function(x, i, j, k)
    + 2 * (i == j && j == k)
    >
    > dimlam <- c(1, 1)
    > #constraint function g_i(x)
    > g <- function(x, i)
    + sum(x[1:2]) - 1
    > #Gr_x_j g_i(x)
    > grg <- function(x, i, j)
    + 1
    > #Gr_x_k Gr_x_j g_i(x)
    > heg <- function(x, i, j, k)
    + 0
    >
    >
    >
    > #true value is (3/4, 1/4, 1/2, 1/2)
    >
    > z0 <- rep(0, sum(dimx)+sum(dimlam))
    >
    > funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
    Error in funSSR(z0, dimx, dimlam, grobj = grobj, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
    Execution halted
Flavor: r-devel-windows-x86_64

Version: 0.99-4
Check: tests
Result: ERROR
     Running 'CER-funCER-Rcode-constr.R' [1s]
     Running 'CER-funCER-Rcode-constrjoint.R' [1s]
     Running 'CER-funCER-Rcode-joint.R' [1s]
     Running 'GNEceq-examples.R' [1s]
     Running 'GNEnseq-examples.R' [1s]
     Running 'NIR-func-Rcode.R' [6s]
     Running 'NIRandVIPexample.R' [3s]
     Running 'SSR-Rcode-funSSRcheck-constrjoint.R' [1s]
     Running 'SSR-funSSR-Rcode-constr.R' [1s]
     Running 'SSR-funSSR-funSSRcheck-constr.R' [1s]
     Running 'SSR-funSSR-funSSRcheck-constrjoint.R' [1s]
     Running 'SSR-testarg.R' [1s]
     Running 'complfunc-3Dplot.R' [1s]
     Running 'complfunc-funcFB.R' [1s]
     Running 'complfunc-limitgraph.R' [1s]
     Running 'sensi-analysis-duopoly.R' [1s]
     Running 'sensi-analysis-genduopoly.R' [7s]
     Running 'sensi-analysis-riverbasinpollution.R' [1s]
     Running 'util-testfunc.R' [1s]
    Running the tests in 'tests/CER-funCER-Rcode-constr.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + sum(dimw))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > w <- z[(n+m+1):(n+m+m)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 17
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in 'tests/CER-funCER-Rcode-constrjoint.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimlam) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 23
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in 'tests/CER-funCER-Rcode-joint.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > lam <- NULL
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 0 0 0
     [1] 13
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in 'tests/GNEnseq-examples.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > itermax <- 10
     >
     > #-------------------------------------------------------------------------------
     > # (1) Example 5 of von Facchinei et al. (2007)
     > #-------------------------------------------------------------------------------
     >
     > dimx <- c(1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j)
     + {
     + if(i == 1)
     + res <- c(2*(x[1]-1), 0)
     + if(i == 2)
     + res <- c(0, 2*(x[2]-1/2))
     + res[j]
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k)
     + 2 * (i == j && j == k)
     >
     > dimlam <- c(1, 1)
     > #constraint function g_i(x)
     > g <- function(x, i)
     + sum(x[1:2]) - 1
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j)
     + 1
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k)
     + 0
     >
     >
     >
     > #true value is (3/4, 1/4, 1/2, 1/2)
     >
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
     Error in funSSR(z0, dimx, dimlam, grobj = grobj, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in 'tests/SSR-Rcode-funSSRcheck-constrjoint.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > g(z, 1)
     [1] 6929.643
     > g(z, 2)
     [1] 4.476365 7.691496
     > g(z, 3)
     [1] 33.50112 87.69150
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in 'tests/SSR-funSSR-Rcode-constr.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in 'tests/SSR-funSSR-funSSRcheck-constr.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in 'tests/SSR-funSSR-funSSRcheck-constrjoint.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB(-g(x, 1), lam[1]),
     + phiFB( -g(x, 2)[1], lam[2]),
     + phiFB( -g(x, 2)[2], lam[3]),
     + phiFB( -g(x, 3)[1], lam[4]),
     + phiFB( -g(x, 3)[2], lam[5]),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 19.622636 19.622636
     [2,] 11.416986 11.416986
     [3,] 27.584864 27.584864
     [4,] -6.921619 -6.921619
     [5,] 72.059689 72.059689
     [6,] 192.348128 192.348128
     [7,] 15.781657 15.781657
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] 3131.4321285 3131.4321285
     [2,] -1.2080298 -1.2080298
     [3,] 21.1333814 21.1333814
     [4,] 43.5617521 43.5617521
     [5,] 180.8388136 180.8388136
     [6,] -0.3205305 -0.3205305
     [7,] 37.6548095 37.6548095
     [8,] 104.1012595 104.1012595
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     > z <- rexp(sum(dimx) + dimmu)
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, grobj=grfullob, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 2.662304 2.662304
     [2,] 90.321922 90.321922
     [3,] 24.625583 24.625583
     [4,] -222.850188 -222.850188
     [5,] 24.279357 24.279357
     [6,] 3.481030 3.481030
     [7,] 35.344420 35.344420
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] -0.8295585 -0.8295585
     [2,] 68.6289389 68.6289389
     [3,] 334.0304399 334.0304399
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     >
     >
     >
     >
     > # (4) compute Jac Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     >
     > resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g,
     + grconstr=grfullg, heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB,
     + joint=h, grjoint=grh, hejoint=heh, dimmu=dimmu)
     Error in jacSSR(z, dimx, dimlam, heobj = hefullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in 'tests/SSR-testarg.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > try(funSSR("x"))
     Error in funSSR("x") : argument "dimx" is missing, with no default
     >
     > try(funSSR(rep(1, 2) , 1, grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     SSR: incompatible dimension for dimlam, dimx, dimmu.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     missing compl argument.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x, compl=phiFB))
     Error in grobj(z, i, j) : unused arguments (i, j)
     Error when calling function, below the try output.
     [1] "Error in grobj(z, i, j) : unused arguments (i, j)\n"
     attr(,"class")
     [1] "try-error"
     attr(,"condition")
     <simpleError in grobj(z, i, j): unused arguments (i, j)>
     Arguments are:
     [[1]]
     [1] 1 1
    
     [[2]]
     [1] 1
    
     [[3]]
     [1] 1
    
     [[4]]
     list()
    
     Error in testfunc(grobjfinal, z, arg = arggrobj, echo = echo, errmess = str) :
     the call to grobj(z, 1, 1, arggrobj) does not work. arguments are x .
     >
     > funSSR(rep(1, 2), rep(1, 2), grobj=function(x, i, j) x, compl=phiFB)
     Error in funSSR(rep(1, 2), rep(1, 2), grobj = function(x, i, j) x, compl = phiFB) :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in 'tests/sensi-analysis-riverbasinpollution.R' failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > #-------------------------------------------------------------------------------
     > # (3) River basin pollution game of Krawczyk and Stanislav Uryasev (2000)
     > #-------------------------------------------------------------------------------
     >
     > myarg0 <- list(
     + C = cbind(c(.1, .12, .15), c(.01, .05, .01)),
     + U = cbind(c(6.5, 5, 5.5), c(4.583, 6.25, 3.75)),
     + K = c(100, 100),
     + E = c(.5, .25, .75),
     + D = c(3, .01)
     + )
     >
     >
     >
     > dimx <- c(1, 1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j, arg)
     + {
     + dij <- 1*(i == j)
     + res <- -(-arg$D[2] - arg$C[i, 2]*dij) * x[i]
     + res - (arg$D[1] - arg$D[2]*sum(x[1:3]) - arg$C[i, 1] - arg$C[i, 2]*x[i]) * dij
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k, arg)
     + {
     + dij <- 1*(i == j)
     + dik <- 1*(i == k)
     +
     + arg$D[2] * dik + arg$D[2] * dij + 2 * arg$C[i, 2] * dij * dik
     + }
     >
     > dimlam <- c(2, 2, 2)
     > #g_i(x)
     > g <- function(x, i, arg)
     + c(sum(arg$U[, 1] * arg$E * x[1:3]) - arg$K[1],
     + sum(arg$U[, 2] * arg$E * x[1:3]) - arg$K[2],
     + -x[1],
     + -x[2],
     + -x[3])
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j, arg)
     + c(arg$U[j, 1] * arg$E[j],
     + arg$U[j, 2] * arg$E[j],
     + -1*(i ==j),
     + -1*(i ==j),
     + -1*(i ==j))
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k, arg)
     + c(0, 0, 0, 0, 0)
     >
     > #true value around (21.146, 16.027, 2.724, 0.574, 0.000)
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > getNE <- function(x, control=list(maxit=100, trace=0), check=TRUE)
     + {
     + res <- sapply(1:NROW(x), function(i)
     + {
     + myarg <- list(
     + C = cbind(x[i,paste("C",1:3,sep="")], x[i,paste("C",1:3+3,sep="")]),
     + U = cbind(x[i,paste("U",1:3,sep="")], x[i,paste("U",1:3+3,sep="")]),
     + K = x[i,paste("K",1:2,sep="")],
     + E = x[i,paste("E",1:3,sep="")],
     + D = x[i,paste("D",1:2,sep="")]
     + )
     +
     + res <- GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
     + constr=g, myarg, grconstr=grg, myarg, heconstr=heg, myarg,
     + compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
     + control=control)
     +
     + if(any(res$par[1:3] < 0) && check)
     + return(rep(NA, 3))
     + else
     + return(res$par[1:3])
     + }
     + )
     + }
     >
     > n <- 10
     > Xinputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     > X2inputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     >
     > Youtputs <- t(getNE(Xinputmatrix))
     Error in if (any(res$par[1:3] < 0) && check) return(rep(NA, 3)) else return(res$par[1:3]) :
     missing value where TRUE/FALSE needed
     Calls: t -> getNE -> sapply -> lapply -> FUN
     Execution halted
Flavor: r-devel-windows-x86_64

Version: 0.99-4
Check: re-building of vignette outputs
Result: ERROR
    Error(s) in re-building vignettes:
    --- re-building 'GNE-howto.Rnw' using Sweave
    Loading required package: alabama
    Loading required package: numDeriv
    Loading required package: nleqslv
    Loading required package: BB
    Loading required package: SQUAREM
    
    Error: processing vignette 'GNE-howto.Rnw' failed with diagnostics:
     chunk 6 (label = singjac)
    Error in jacSSR(z0, dimx, dimlam, heobj = heobj, myarg, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
    
    --- failed re-building 'GNE-howto.Rnw'
    
    SUMMARY: processing the following file failed:
     'GNE-howto.Rnw'
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-devel-windows-x86_64

Version: 0.99-4
Check: tests
Result: ERROR
     Running ‘CER-funCER-Rcode-constr.R’ [1s/1s]
     Running ‘CER-funCER-Rcode-constrjoint.R’ [1s/1s]
     Running ‘CER-funCER-Rcode-joint.R’ [0s/1s]
     Running ‘GNEceq-examples.R’ [1s/1s]
     Running ‘GNEnseq-examples.R’ [0s/1s]
     Running ‘NIR-func-Rcode.R’ [6s/7s]
     Running ‘NIRandVIPexample.R’ [1s/2s]
     Running ‘SSR-Rcode-funSSRcheck-constrjoint.R’ [1s/1s]
     Running ‘SSR-funSSR-Rcode-constr.R’ [1s/1s]
     Running ‘SSR-funSSR-funSSRcheck-constr.R’ [1s/1s]
     Running ‘SSR-funSSR-funSSRcheck-constrjoint.R’ [1s/1s]
     Running ‘SSR-testarg.R’ [0s/0s]
     Running ‘complfunc-3Dplot.R’ [1s/1s]
     Running ‘complfunc-funcFB.R’ [0s/1s]
     Running ‘complfunc-limitgraph.R’ [1s/1s]
     Running ‘sensi-analysis-duopoly.R’ [0s/1s]
     Running ‘sensi-analysis-genduopoly.R’ [6s/8s]
     Running ‘sensi-analysis-riverbasinpollution.R’ [1s/1s]
     Running ‘util-testfunc.R’ [0s/1s]
    Running the tests in ‘tests/CER-funCER-Rcode-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + sum(dimw))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > w <- z[(n+m+1):(n+m+m)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 17
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/CER-funCER-Rcode-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- dimw <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimlam) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 1 2 2
     [1] 23
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/CER-funCER-Rcode-joint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute H
     > #
     >
     > z <- rexp(sum(dimx) + 2*sum(dimmu))
     >
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > lam <- NULL
     > mu <- z[(n+m+1):(n+m+dimmu)]
     > w <- z[(n+m+dimmu+1):(n+2*m+2*dimmu)]
     >
     > resphi <- funCER(z, dimx, dimlam, grobj=grfullob, joint=h, grjoint=grh, dimmu=dimmu, echo=TRUE)
     [1] 2 2 3
     [1] 0 0 0
     [1] 13
     Error in funSSR(z[1:(n + m + dimmu)], dimx, dimlam, grobj, arggrobj, constr, :
     DLL requires the use of native symbols
     Calls: funCER -> funSSR
     Execution halted
    Running the tests in ‘tests/GNEnseq-examples.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > itermax <- 10
     >
     > #-------------------------------------------------------------------------------
     > # (1) Example 5 of von Facchinei et al. (2007)
     > #-------------------------------------------------------------------------------
     >
     > dimx <- c(1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j)
     + {
     + if(i == 1)
     + res <- c(2*(x[1]-1), 0)
     + if(i == 2)
     + res <- c(0, 2*(x[2]-1/2))
     + res[j]
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k)
     + 2 * (i == j && j == k)
     >
     > dimlam <- c(1, 1)
     > #constraint function g_i(x)
     > g <- function(x, i)
     + sum(x[1:2]) - 1
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j)
     + 1
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k)
     + 0
     >
     >
     >
     > #true value is (3/4, 1/4, 1/2, 1/2)
     >
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
     Error in funSSR(z0, dimx, dimlam, grobj = grobj, constr = g, grconstr = grg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-Rcode-funSSRcheck-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > g(z, 1)
     [1] 395.5627
     > g(z, 2)
     [1] -6.251103 12.375583
     > g(z, 3)
     [1] 14.73507 92.37558
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-Rcode-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-funSSRcheck-constr.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     +
     +
     + if(i == 1)
     + res <- grad[j]
     + if(i != 1)
     + res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     +
     +
     + he2 <- matrix(0, 7, 7)
     +
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam))
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     >
     > resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
     Error in funSSR(z, dimx, dimlam, grobj = grfullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-funSSR-funSSRcheck-constrjoint.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > # (1) associated objective functions
     > #
     >
     > dimx <- c(2, 2, 3)
     >
     > #Gr_x_j O_i(x)
     > grfullob <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- 3*(x - 1:7)^2
     + }
     + if(i == 2)
     + {
     + grad <- 1:7*(x - 1:7)^(0:6)
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
     + grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
     +
     + }
     + grad[j]
     + }
     >
     >
     > #Gr_x_k Gr_x_j O_i(x)
     > hefullob <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he <- diag( 6*(x - 1:7) )
     + }
     + if(i == 2)
     + {
     + he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
     + }
     + if(i == 3)
     + {
     + s <- x[5]^2 + x[6]^2 + x[7]^2
     +
     + he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
     + c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
     + c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
     + }
     + he[j,k]
     + }
     >
     >
     >
     > # (2) constraint linked functions
     > #
     >
     > dimlam <- c(1, 2, 2)
     >
     > #constraint function g_i(x)
     > g <- function(x, i)
     + {
     + x <- x[1:7]
     + #cat(x[1:5], "|", i, "\n")
     + if(i == 1)
     + res <- sum( x^(1:7) ) -7
     + if(i == 2)
     + res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
     + if(i == 3)
     + res <- c(sum(x^2) + 1, 100 - sum(x))
     + #cat("res", res + par$a, "\n")
     + res
     + }
     >
     >
     > #Gr_x_j g_i(x)
     > grfullg <- function(x, i, j)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + grad <- (1:7) * x ^ (0:6)
     + }
     + if(i == 2)
     + {
     + grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
     + grad <- cbind(grad, -1)
     + }
     + if(i == 3)
     + {
     + grad <- cbind(2*x, -1)
     + }
     + if(i == 1) res <- grad[j]
     + if(i != 1) res <- grad[j,]
     + as.numeric(res)
     + }
     >
     >
     >
     > #Gr_x_k Gr_x_j g_i(x)
     > hefullg <- function(x, i, j, k)
     + {
     + x <- x[1:7]
     + if(i == 1)
     + {
     + he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
     + }
     + if(i == 2)
     + {
     + he1 <- matrix(0, 7, 7)
     + he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
     + he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
     + he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
     + he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
     + he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
     + he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
     + he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i == 3)
     + {
     + he1 <- diag(rep(2, 7))
     + he2 <- matrix(0, 7, 7)
     + }
     + if(i != 1)
     + return( c(he1[j, k], he2[j, k]) )
     + else
     + return( he1[j, k] )
     + }
     >
     >
     >
     >
     > dimmu <- 3
     >
     > #constraint function h(x)
     > h <- function(x)
     + {
     + x <- x[1:7]
     + c(prod(x) - 1, sum(x^2) -2, sum(x^3) -3)
     + }
     > grh <- function(x, j)
     + {
     + x <- x[1:7]
     + c(prod(x[-j]), 2*x[j], 3*x[j]^2)
     + }
     > heh <- function(x, j, k)
     + {
     + x <- x[1:7]
     + c(prod(x[-c(j,k)]), 2*(j==k), 6*x[j]*(j==k))
     + }
     >
     >
     >
     > # (3) compute Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB(-g(x, 1), lam[1]),
     + phiFB( -g(x, 2)[1], lam[2]),
     + phiFB( -g(x, 2)[2], lam[3]),
     + phiFB( -g(x, 3)[1], lam[4]),
     + phiFB( -g(x, 3)[2], lam[5]),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 1.015003 1.015003
     [2,] 3.580902 3.580902
     [3,] 26.265700 26.265700
     [4,] -189.879903 -189.879903
     [5,] -2.642749 -2.642749
     [6,] -2.580795 -2.580795
     [7,] -8.912703 -8.912703
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] -0.31882400 -0.31882400
     [2,] -1.03526649 -1.03526649
     [3,] 33.13601264 33.13601264
     [4,] 6.46459542 6.46459542
     [5,] 192.69313602 192.69313602
     [6,] -0.64771072 -0.64771072
     [7,] 1.25516769 1.25516769
     [8,] -0.05440948 -0.05440948
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     > z <- rexp(sum(dimx) + dimmu)
     > n <- sum(dimx)
     > m <- 0
     > x <- z[1:n]
     > mu <- z[-(1:(n+m))]
     >
     > resphi <- GNE:::funSSRcheck(z, dimx, grobj=grfullob, compl=phiFB, joint=h, grjoint=grh, dimmu=dimmu)
     >
     >
     > check <- c(grfullob(x, 1, 1) + mu %*% grh(x, 1),
     + grfullob(x, 1, 2) + mu %*% grh(x, 2),
     + grfullob(x, 2, 3) + mu %*% grh(x, 3),
     + grfullob(x, 2, 4) + mu %*% grh(x, 4),
     + grfullob(x, 3, 5) + mu %*% grh(x, 5),
     + grfullob(x, 3, 6) + mu %*% grh(x, 6),
     + grfullob(x, 3, 7) + mu %*% grh(x, 7),
     + phiFB( -h(x)[1], mu[1]),
     + phiFB( -h(x)[2], mu[2]),
     + phiFB( -h(x)[3], mu[3]))
     >
     >
     > #check
     > cat("\n\n________________________________________\n\n")
    
    
     ________________________________________
    
     >
     > #part A
     > print(cbind(check, res=as.numeric(resphi))[1:n, ])
     check res
     [1,] 28.3910270 28.3910270
     [2,] 8.2127921 8.2127921
     [3,] 23.4009590 23.4009590
     [4,] -238.5655176 -238.5655176
     [5,] -0.6296123 -0.6296123
     [6,] -1.8145695 -1.8145695
     [7,] -1.4504121 -1.4504121
     > #part B
     > print(cbind(check, res=as.numeric(resphi))[(n+1):length(z), ])
     check res
     [1,] -0.5610685 -0.5610685
     [2,] 14.3411011 14.3411011
     [3,] 31.3599631 31.3599631
     >
     >
     > if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3))
     + stop("wrong result")
     >
     >
     >
     >
     >
     >
     >
     > # (4) compute Jac Phi
     > #
     >
     > z <- rexp(sum(dimx) + sum(dimlam) + dimmu)
     >
     > n <- sum(dimx)
     > m <- sum(dimlam)
     > x <- z[1:n]
     > lam <- z[(n+1):(n+m)]
     > mu <- z[-(1:(n+m))]
     >
     >
     > resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g,
     + grconstr=grfullg, heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB,
     + joint=h, grjoint=grh, hejoint=heh, dimmu=dimmu)
     Error in jacSSR(z, dimx, dimlam, heobj = hefullob, constr = g, grconstr = grfullg, :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/SSR-testarg.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     >
     > try(funSSR("x"))
     Error in funSSR("x") : argument "dimx" is missing, with no default
     >
     > try(funSSR(rep(1, 2) , 1, grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     SSR: incompatible dimension for dimlam, dimx, dimmu.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x))
     Error in testargfunSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, :
     missing compl argument.
     >
     > try(funSSR(rep(1, 2), rep(1, 2), grobj=function(x) x, compl=phiFB))
     Error in grobj(z, i, j) : unused arguments (i, j)
     Error when calling function, below the try output.
     [1] "Error in grobj(z, i, j) : unused arguments (i, j)\n"
     attr(,"class")
     [1] "try-error"
     attr(,"condition")
     <simpleError in grobj(z, i, j): unused arguments (i, j)>
     Arguments are:
     [[1]]
     [1] 1 1
    
     [[2]]
     [1] 1
    
     [[3]]
     [1] 1
    
     [[4]]
     list()
    
     Error in testfunc(grobjfinal, z, arg = arggrobj, echo = echo, errmess = str) :
     the call to grobj(z, 1, 1, arggrobj) does not work. arguments are x .
     >
     > funSSR(rep(1, 2), rep(1, 2), grobj=function(x, i, j) x, compl=phiFB)
     Error in funSSR(rep(1, 2), rep(1, 2), grobj = function(x, i, j) x, compl = phiFB) :
     DLL requires the use of native symbols
     Execution halted
    Running the tests in ‘tests/sensi-analysis-riverbasinpollution.R’ failed.
    Complete output:
     > if(!require("GNE"))stop("this test requires package GNE.")
     Loading required package: GNE
     Loading required package: alabama
     Loading required package: numDeriv
     Loading required package: nleqslv
     Loading required package: BB
     Loading required package: SQUAREM
     >
     > #-------------------------------------------------------------------------------
     > # (3) River basin pollution game of Krawczyk and Stanislav Uryasev (2000)
     > #-------------------------------------------------------------------------------
     >
     > myarg0 <- list(
     + C = cbind(c(.1, .12, .15), c(.01, .05, .01)),
     + U = cbind(c(6.5, 5, 5.5), c(4.583, 6.25, 3.75)),
     + K = c(100, 100),
     + E = c(.5, .25, .75),
     + D = c(3, .01)
     + )
     >
     >
     >
     > dimx <- c(1, 1, 1)
     > #Gr_x_j O_i(x)
     > grobj <- function(x, i, j, arg)
     + {
     + dij <- 1*(i == j)
     + res <- -(-arg$D[2] - arg$C[i, 2]*dij) * x[i]
     + res - (arg$D[1] - arg$D[2]*sum(x[1:3]) - arg$C[i, 1] - arg$C[i, 2]*x[i]) * dij
     + }
     > #Gr_x_k Gr_x_j O_i(x)
     > heobj <- function(x, i, j, k, arg)
     + {
     + dij <- 1*(i == j)
     + dik <- 1*(i == k)
     +
     + arg$D[2] * dik + arg$D[2] * dij + 2 * arg$C[i, 2] * dij * dik
     + }
     >
     > dimlam <- c(2, 2, 2)
     > #g_i(x)
     > g <- function(x, i, arg)
     + c(sum(arg$U[, 1] * arg$E * x[1:3]) - arg$K[1],
     + sum(arg$U[, 2] * arg$E * x[1:3]) - arg$K[2],
     + -x[1],
     + -x[2],
     + -x[3])
     > #Gr_x_j g_i(x)
     > grg <- function(x, i, j, arg)
     + c(arg$U[j, 1] * arg$E[j],
     + arg$U[j, 2] * arg$E[j],
     + -1*(i ==j),
     + -1*(i ==j),
     + -1*(i ==j))
     > #Gr_x_k Gr_x_j g_i(x)
     > heg <- function(x, i, j, k, arg)
     + c(0, 0, 0, 0, 0)
     >
     > #true value around (21.146, 16.027, 2.724, 0.574, 0.000)
     > z0 <- rep(0, sum(dimx)+sum(dimlam))
     >
     > getNE <- function(x, control=list(maxit=100, trace=0), check=TRUE)
     + {
     + res <- sapply(1:NROW(x), function(i)
     + {
     + myarg <- list(
     + C = cbind(x[i,paste("C",1:3,sep="")], x[i,paste("C",1:3+3,sep="")]),
     + U = cbind(x[i,paste("U",1:3,sep="")], x[i,paste("U",1:3+3,sep="")]),
     + K = x[i,paste("K",1:2,sep="")],
     + E = x[i,paste("E",1:3,sep="")],
     + D = x[i,paste("D",1:2,sep="")]
     + )
     +
     + res <- GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
     + constr=g, myarg, grconstr=grg, myarg, heconstr=heg, myarg,
     + compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
     + control=control)
     +
     + if(any(res$par[1:3] < 0) && check)
     + return(rep(NA, 3))
     + else
     + return(res$par[1:3])
     + }
     + )
     + }
     >
     > n <- 10
     > Xinputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     > X2inputmatrix <- t(replicate(n, unlist(myarg0) * (1 + rnorm(19, 0, .1))))
     >
     > Youtputs <- t(getNE(Xinputmatrix))
     Error in if (any(res$par[1:3] < 0) && check) return(rep(NA, 3)) else return(res$par[1:3]) :
     missing value where TRUE/FALSE needed
     Calls: t -> getNE -> sapply -> lapply -> FUN
     Execution halted
Flavor: r-patched-linux-x86_64