Package ‘varSelRF’

July 10, 2017

Version 0.7-8
Date 2017-07-10
Title Variable Selection using Random Forests
Author Ramon Diaz-Uriarte <rdiaz02@gmail.com>
Maintainer Ramon Diaz-Uriarte <rdiaz02@gmail.com>
Depends R (>= 2.0.0), randomForest, parallel
Description Variable selection from random forests using both
backwards variable elimination (for the selection of small sets
of non-redundant variables) and selection based on the
importance spectrum (somewhat similar to scree plots; for the
selection of large, potentially highly-correlated variables).
Main applications in high-dimensional data (e.g., microarray
data, and other genomics and proteomics applications).
LazyLoad Yes
License GPL (>= 2)
URL http://ligarto.org/rdiaz/Software/Software.html,
 http://ligarto.org/rdiaz/Papers/rFVS/randomForestVarSel.html,
 https://github.com/rdiaz02/varSelRF
Repository CRAN
Date/Publication 2017-07-10 13:54:22 UTC
NeedsCompilation no

R topics documented:

plot.varSelRF 2
plot.varSelRFBoot 3
randomVarImpsRF 5
randomVarImpsRFplot 6
selProbPlot 9
summary.varSelRFBoot 11
varSelImpSpecRF 13
plot.varSelRF

varSelRF 15
varSelRFBoot 19

Index 23

plot.varSelRF

Plot a varSelRF object

Description

Plots a varSelRF object, showing the initial variable importances, and the change in OOB error with the number of variables.

Usage

```r
## S3 method for class 'varSelRF'
plot(x, nvar = NULL, which = c(1, 2), ...)
```

Arguments

- `x` The varSelRF object.
- `nvar` The number of variables for which the initial variable importances should be shown. By default, only the 30 with the largest importance are shown.
- `which` which plots should be drawn, either 1 (for the initial variable importance plot), 2 (for the change in OOB error with the number of variables) or c(1,2) for drawing both plots
- `...` Not used.

Value

This function is only used for its side effect of producing plots.

Warning

The OOB Error rate is biased down (and can be severely biased down) because we do (potentially many) rounds of reducing the set of predictor variables until we minimize this OOB error rate.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

Description

Plots of out-of-bag predictions and OOB error vs. number of variables.

Usage

```r
## S3 method for class 'varSelRFBoot'
plot(x, oobProb = TRUE,
     oobProbBoxPlot = FALSE,
     ErrorNum = TRUE,
     subject.names = NULL,
     class.to.plot = NULL,
     ...)  
```

Arguments

- `x`
 An object of class varSelRFBoot, such as returned by function `varSelRFBoot`.

- `oobProb`
 If TRUE plot (average) out-of-bag predictions. See `prob.predictions` in `varSelRFBoot` for more details about the out-of-bag predictions.

- `oobProbBoxPlot`
 If TRUE plot a box-plot of out-of-bag predictions.

- `ErrorNum`
 If TRUE plot OOB error (as returned by random forest) vs. the number of variables.

- `subject.names`
 If not NULL, a vector, of the same length as the number of cases (samples or subjects) with IDs for the cases/samples/subjects, that will be shown to the left of the average out-of-bag prediction.

- `class.to.plot`
 If not NULL, an integer or a vector of integers. These integers are those class levels for which out-of-bag predictions plots will be returned.

- `...`
 Not used.

Examples

```r
x <- matrix(rnorm(25 * 30), ncol = 30)
x[1:10, 1:2] <- x[1:10, 1:2] + 2
cl <- factor(c(rep("A", 10), rep("B", 15)))

rf.vs1 <- varSelRF(x, cl, ntree = 200, ntreeIterat = 100,
                   vars.drop.frac = 0.2)

plot(rf.vs1)
```
Value

This function is only used for its side effects of producing plots.

Warning

The OOB Error rate is biased down (and can be severely biased down) because we do (potentially many) rounds of reducing the set of predictor variables until we minimize this OOB error rate. Note, however, that this is NOT the error rate reported as the estimate of the error rate for the procedure (for which we use the .632+ bootstrap rule).

Note

When plotting the out-of-bag predictions, we show one plot for each class. This is an overkill for two-class problems, but not necessarily for problems with more than two classes. Use class.to.plot to plot only those classes that interest you.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

randomForest, varSelRF, summary.varSelRFBoot, varSelRFBoot

Examples

```r
## Not run:
## This is a small example, but can take some time.

x <- matrix(rnorm(25 * 30), ncol = 30)
x[1:10, 1:2] <- x[1:10, 1:2] + 2
c1 <- factor(c(rep("A", 10), rep("B", 15)))
rf.vsl <- varSelRF(x, c1, ntree = 200, ntreeIterat = 100, vars.drop.frac = 0.2)
rf.vsb <- varSelRFBoot(x, c1,
                        bootnumber = 10,
                        usingCluster = FALSE,
                        srf = rf.vsl)
rf.vsb
summary(rf.vsb)
```
randomVarImpsRF

```r
plot(rf.vsb)
## End(Not run)
```

randomVarImpsRF
Variable importances from random forest on permuted class labels

Description

Return variable importances from random forests fitted to data sets like the original except class labels have been randomly permuted.

Usage

```r
randomVarImpsRF(xdata, Class, forest, numrandom = 100,  
                whichImp = "impsUnscaled", usingCluster = TRUE,  
                TheCluster = NULL, ...)
```

Arguments

- **xdata**: A data frame or matrix, with subjects/cases in rows and variables in columns. NAs not allowed.
- **Class**: The dependent variable; must be a factor.
- **forest**: A previously fitted random forest (see `randomForest`).
- **numrandom**: The number of random permutations of the class labels.
- **whichImp**: A vector of one or more of `impsUnscaled`, `impsScaled`, `impsGini`, that correspond, respectively, to the (unscaled) mean decrease in accuracy, the scaled mean decrease in accuracy, and the Gini index. See below and `randomForest`, `importance` and the references for further explanations of the measures of variable importance.
- **usingCluster**: If TRUE use a cluster to parallelize the calculations.
- **TheCluster**: The name of the cluster, if one is used.
- **...**: Not used.

Details

The measure of variable importance most often used is based on the decrease of classification accuracy when values of a variable in a node of a tree are permuted randomly (see references); we use the unscaled version —see our paper and supplementary material. Note that, by default, `importance` returns the scaled version.

Value

An object of class `randomVarImpsRF`, which is a list with one to three named components. The name of each component corresponds to the types of variable importance measures selected (i.e., `impsUnscaled`, `impsScaled`, `impsGini`).

Each component is a matrix, of dimensions number of variables by `numrandom`; each element \((i, j) \) of this matrix is the variable importance for variable \(i \) and random permutation \(j \).
Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

randomForest, varSelRF, varSelRFBoot, varSelImpSpecRF, randomVarImpsRFplot

Examples

```r
x <- matrix(rnorm(500 * 20), ncol = 20)
x[1:20, 1:2] <- x[1:20, 1:2] + 2
c1 <- factor(c(rep("A", 20), rep("B", 25)))

rf <- randomForest(x, c1, ntree = 200, importance = TRUE)
rf.rvi <- randomVarImpsRF(x, c1,
rf,
    numrandom = 20,
    usingCluster = FALSE)

randomVarImpsRFplot(rf.rvi, rf)
```

randomVarImpsRFplot
Plot random random variable importances

Description

Plot variable importances from random permutations of class labels and the variable importances from the original data set.
Usage

randomVarImpsRFplot(randomImportances, forest,
 whichImp = "impsUnscaled", nvars = NULL,
 show.var.names = FALSE, vars.highlight = NULL,
 main = NULL, screeRandom = TRUE,
 lwdBlack = 1.5,
 lwdRed = 2,
 lwdLightblue = 1,
 cexPoint = 1,
 overlayTrue = FALSE,
 xlab = NULL,
 ylab = NULL, ...)

Arguments

randomImportances
A list with a structure such as the object return by `randomVarImpsRF`.

forest
A random forest fitted to the original data. This forest must have been fitted with
importances = TRUE.

whichImp
The importance measure to use. One (only one) of impsUnscaled, impsScaled,
impsGini, that correspond, respectively, to the (unscaled) mean decrease in ac-
curacy, the scaled mean decrease in accuracy, and the Gini index. See below and
randomForest.importance and the references for further explanations of the
measures of variable importance.

nvars
If NULL will show the plot for the complete range of variables. If an integer,
will plot only the most important nvars.

show.var.names
If TRUE, show the variable names in the plot. Unless you are plotting few
variables, it probably won’t be of any use.

vars.highlight
A vector indicating the variables to highlight in the plot with a vertical blue seg-
ment. You need to pass here a vector of variable names, not variable positions.

main
The title for the plot.

screeRandom
If TRUE, order all the variable importances (i.e., those from both the original
and the permuted class labels data sets) from largest to smallest before plotting.
The plot will thus resemble a usual "scree plot".

lwdBlack
The width of the line to use for the importances from the original data set.

lwdRed
The width of the line to use for the average of the importances for the permuted
data sets.

lwdLightblue
The width of the line for the importances for the individual permuted data sets.

cexPoint
cex argument for the points for the importances from the original data set.

overlayTrue
If TRUE, the variable importance from the original data set will be plotted last,
so you can see it even if buried in the middle of many gree lines; can be of help
when the plot does not allow you to see the black line.

xlab
The title for the x-axis (see xlab).

ylab
The title for the y-axis (see ylab).

... Additional arguments to plot.
Value

Only used for its side effects of producing plots. In particular, you will see lines of three colors:

- **black**: Connects the variable importances from the original simulated data.
- **green**: Connect the variable importances from the data sets with permuted class labels; there will be as many lines as `numrandom` where used when `randomVarImpsRF` was called to obtain the random importances.
- **red**: Connects the average of the importances from the permuted data sets.

Additionally, if you used a valid set of values for `vars.highlight`, these will be shown with a vertical blue segment.

Note

These plots resemble the scree plots commonly used with principal component analysis, and the actual choice of colors was taken from the importance spectrum plots of Friedman & Meulman.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

`randomforest`, `varSelRF`, `varSelRFBoot`, `varSelImpsSpecRF`, `randomVarImpsRF`

Examples

```r
x <- matrix(rnorm(45 * 30), ncol = 30)
x[1:20, 1:2] <- x[1:20, 1:2] + 2
colnames(x) <- paste0("V", seq.int(ncol(x)))
c1 <- factor(c(rep("A", 20), rep("B", 25)))

rorf <- randomForest(x, c1, ntree = 200, importance = TRUE)
rf.rvi <- randomVarImpsRF(x, c1, rf,
  numrandom = 20,
  usingCluster = FALSE)

randomVarImpsRFplot(rf.rvi, rf)
op <- par(las = 2)
```
randomVarImpsRFplot(rf.rvi, rf, show.var.names = TRUE)
par(op)

Not run:
identical, but using a cluster
make a small cluster, for the sake of illustration
psockCL <- makeCluster(2, "PSOCK")
clusterSetRNGStream(psockCL, iseed = 789)
clusterEvalQ(psockCL, library(varSelRF))

rf.rvi <- randomVarImpsRF(x, cl,
 rf,
 numrandom = 20,
 usingCluster = TRUE,
 TheCluster = psockCL)

randomVarImpsRFplot(rf.rvi, rf)
stopCluster(psockCL)

End(Not run)

selProbPlot

Selection probability plot for variable importance from random forests

Description

Plot, for the top ranked k variables from the original sample, the probability that each of these variables is included among the top ranked k genes from the bootstrap samples.

Usage

```r
selProbPlot(object, k = c(20, 100),
            color = TRUE,
            legend = FALSE,
            xlegend = 68,
            ylegend = 0.93,
            cexlegend = 1.4,
            main = NULL,
            xlab = "Rank of gene",
            ylab = "Selection probability",
            pch = 19,...)
```

Arguments

- **object**: An object of class varSelRFBoot such as returned by the `varSelRFBoot` function.
pepe et al., 2003 suggested the use of selection probability plots to evaluate the stability and confidence on our selection of "relevant genes." this paper also presents several more sophisticated ideas not implemented here.

value

used for its side effects of producing a plot. in a single plot show the "selection probability plot" for the upper (largest variable importance) kt th variables. by default, show the upper 20 and the upper 100 colored blue and red respectively.

note

this function is in very rudimentary shape and could be used for more general types of data. i wrote specifically to produce fig. 4 of the paper.

author(s)

ramon diaz-uriarte <rdiaz02@gmail.com>

references

breiman, l. (2001) random forests. machine learning, 45, 5–32.

pepe, m. s., longton, g., anderson, g. l. & schummer, m. (2003) Selecting differentially expressed genes from microarray experiments. biometrics, 59, 133–142.

See Also

randomForest, varSelRF, varSelRFBoot, randomVarImpsRFplot, randomVarImpsRF

Examples

```r
## This is a small example, but can take some time.

x <- matrix(rnorm(25 * 30), ncol = 30)
x[1:10, 1:2] <- x[1:10, 1:2] + 2
c1 <- factor(c(rep("A", 10), rep("B", 15)))

rf.vs1 <- varSelRF(x, c1, ntree = 200, ntreeIterat = 100,
                  vars.drop.frac = 0.2)
rf.vsB <- varSelRFBoot(x, c1,
                       bootnumber = 10,
                       usingCluster = FALSE,
                       srf = rf.vs1)

selProbPlot(rf.vsB, k = c(5, 10), legend = TRUE,
            xlegend = 8, ylegend = 0.8)
```

summary.varSelRFBoot
Summary of a varSelRFBoot object

Description

Returns error rate and stability measures of a varSelRFBoot object.

Usage

```r
## S3 method for class 'varSelRFBoot'
summary(object, return.model.freqs = FALSE,
         return.class.probs = TRUE,
         return.var.freqs.b.models = TRUE, ...)
```

Arguments

- **object**
 An object of class varSelRFBoot, as returned from `varSelRFBoot`.

- **return.model.freqs**
 If TRUE return a table with the frequencies of the final "models" (sets of selected variables) over all bootstrap replications.

- **return.class.probs**
 If TRUE return average class probabilities for each sample based on the out-of-bag probabilities (see `varSelRFBoot`, the `prob.predictions` component).

- **return.var.freqs.b.models**
 If TRUE return the frequencies of all variables selected from the bootstrap replicates.

- **...**
 Not used.
Value

If return.class.probs = TRUE a matrix with the average class probabilities for each sample based on the out-of-bag probabilities.

Regardless of that setting, print out several summaries:

Summaries related to the "simplified" random forest on the original data
Such as the number and identity of the variables selected.

Summaries related to the error rate estimate
Such as the .632+ estimate, and some of its components

Summaries related to the stability (uniqueness) of the results obtained
Such as the frequency of the selected variables in the bootstrap runs, the frequency of the selected variables in the bootstrap runs that are also among the variables selected from the complete run, the overlap of the bootstrap forests with the forest from the original data set (see varSelRF for the definition of overlap), and (optionally) the frequency of the "models", where a model is the set of variables selected in any particular run.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

`randomForest`, `varSelRF`, `varSelRFBoot`, `plot.varSelRFBoot`.

Examples

```r
## Not run:
## This is a small example, but can take some time.

x <- matrix(rnorm(25 * 30), ncol = 30)
x[1:10, 1:2] <- x[1:10, 1:2] + 2
c1 <- factor(c(rep("A", 10), rep("B", 15)))

rf.vsl <- varSelRF(x, c1, ntree = 200, ntreeIterat = 100,
                   vars.drop.frac = 0.2)
rf.vsb <- varSelRFBoot(x, c1,
                       bootnumber = 10,
                       usingCluster = FALSE,
                       srf = rf.vsl)
```
Description

Perform variable selection based on a simple heuristic using the importance spectrum of the original data compared to the importance spectra from the same data with the class labels randomly permuted.

Usage

```r
varSelImpSpecRF(forest, xdata = NULL, class = NULL, 
randomImps = NULL, 
threshold = 0.1, 
umrandom = 20, 
whichImp = "impsUnscaled", 
usingCluster = TRUE, 
TheCluster = NULL, ...)
```

Arguments

- **forest** A previously fitted random forest (see `randomForest`).
- **xdata** A data frame or matrix, with subjects/cases in rows and variables in columns. NAs not allowed.
- **class** The dependent variable; must be a factor.
- **randomImps** A list with a structure such as the object return by `randomVarImpsRF`.
- **threshold** The threshold for the selection of variables. See details.
- **numrandom** The number of random permutations of the class labels.
- **whichImp** One of `impsUnscaled`, `impsScaled`, `impsGini`, that correspond, respectively, to the (unscaled) mean decrease in accuracy, the scaled mean decrease in accuracy, and the Gini index. See below and `randomForest`, `importance` and the references for further explanations of the measures of variable importance.
- **usingCluster** If TRUE use a cluster to parallelize the calculations.
- **TheCluster** The name of the cluster, if one is used.
- `...` Not used.
Details

You can either pass as arguments a valid object for randomImps, obtained from a previous call to randomVarImpsRF OR you can pass a covariate data frame and a dependent variable, and these will be used to obtain the random importances. The former is preferred for normal use, because this function will not returned the computed random variable importances, and this computation can be lengthy. If you pass both randomImps, xdata, and Class, randomImps will be used.

To select variables, start by ordering from largest \((i = 1)\) to smallest \((i = p)\), where \(p\) is the number of variables), the variable importances from the original data and from each of the data sets with permuted class labels. (So the ordering is done in each data set independently). Compute \(q_i\), the \(1 - \text{threshold}\) quantile of the ordered variable importances from the permuted data at ordered position \(i\). Then, starting from \(i = 1\), let \(i_a\) be the first \(i\) for which the variable importance from the original data is smaller than \(q_i\). Select all variables from \(i = 1\) to \(i = i_a - 1\).

Value

A vector with the names of the selected variables, ordered by decreasing importance.

Note

The name of this function is related to the idea of "importance spectrum plot", which is the term that Friedman & Meulman, 2005 use in their paper.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

randomForest, varSelRF, varSelRFBoot, randomVarImpsRFplot, randomVarImpsRF

Examples

```r
x <- matrix(rnorm(100 * 30), ncol = 30)
x[1:20, 1:2] <- x[1:20, 1:2] + 2
c1 <- factor(c(rep("A", 20), rep("B", 25)))

rf <- randomForest(x, c1, ntree = 200, importance = TRUE)
rf.rvi <- randomVarImpsRF(x, c1, rf, numrandom = 20,
```
Variable selection from random forests using OOB error

Description

Using the OOB error as minimization criterion, carry out variable elimination from random forest, by successively eliminating the least important variables (with importance as returned from random forest).

Usage

```r
varSelRF(xdata, Class, c.sd = 1, mtryFactor = 1, ntree = 5000,
        ntreeIterat = 2000, vars.drop.num = NULL, vars.drop.frac = 0.2,
        whole.range = TRUE, recompute.var.imp = FALSE, verbose = FALSE,
        returnFirstForest = TRUE, fitted.rf = NULL, keep.forest = FALSE)
```

Arguments

- **xdata**: A data frame or matrix, with subjects/cases in rows and variables in columns. NAs not allowed.
- **Class**: The dependent variable; must be a factor.
- **c.sd**: The factor that multiplies the sd. to decide on stopping the iterations or choosing the final solution. See reference for details.
varSelRF

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtryFactor</td>
<td>The multiplication factor of (\sqrt{\text{number.of.variables}}) for the number of variables to use for the mtry argument of randomForest.</td>
</tr>
<tr>
<td>ntree</td>
<td>The number of trees to use for the first forest; same as ntree for randomForest.</td>
</tr>
<tr>
<td>ntreeIterat</td>
<td>The number of trees to use (ntree of randomForest) for all additional forests.</td>
</tr>
<tr>
<td>vars.drop.num</td>
<td>The number of variables to exclude at each iteration.</td>
</tr>
<tr>
<td>vars.drop.frac</td>
<td>The fraction of variables, from those in the previous forest, to exclude at each iteration.</td>
</tr>
<tr>
<td>whole.range</td>
<td>If TRUE continue dropping variables until a forest with only two variables is built, and choose the best model from the complete series of models. If FALSE, stop the iterations if the current OOB error becomes larger than the initial OOB error (plus c.sdOOB standard error) or if the current OOB error becomes larger than the previous OOB error (plus c.sdOOB standard error).</td>
</tr>
<tr>
<td>recompute.var.imp</td>
<td>If TRUE recompute variable importances at each new iteration.</td>
</tr>
<tr>
<td>verbose</td>
<td>Give more information about what is being done.</td>
</tr>
<tr>
<td>returnFirstForest</td>
<td>If TRUE the random forest from the complete set of variables is returned.</td>
</tr>
<tr>
<td>fitted.rf</td>
<td>An (optional) object of class randomForest previously fitted. In this case, the ntree and mtryFactor arguments are obtained from the fitted object, not the arguments to this function.</td>
</tr>
<tr>
<td>keep.forest</td>
<td>Same argument as in randomForest function. If the forest is kept, it will be returned as part of the "rf.model" component of the output. Beware that setting this to TRUE can lead to very large memory consumption.</td>
</tr>
</tbody>
</table>

Details

With the default parameters, we examine all forest that result from eliminating, iteratively, a fraction, vars.drop.frac, of the least important variables used in the previous iteration. By default, `vars.drop.frac = 0.2` which allows for relatively fast operation, is coherent with the idea of an “aggressive variable selection” approach, and increases the resolution as the number of variables considered becomes smaller. By default, we do not recalculate variable importances at each step (`recompute.var.imp = FALSE`) as Svetnik et al. 2004 mention severe overfitting resulting from recalculating variable importances. After fitting all forests, we examine the OOB error rates from all the fitted random forests. We choose the solution with the smallest number of genes whose error rate is within c.sd standard errors of the minimum error rate of all forests. (The standard error is calculated using the expression for a binomial error count \[\sqrt{p(1-p) + 1/N}\]). Setting c.sd = 0 is the same as selecting the set of genes that leads to the smallest error rate. Setting c.sd = 1 is similar to the common “1 s.e. rule”, used in the classification trees literature; this strategy can lead to solutions with fewer genes than selecting the solution with the smallest error rate, while achieving an error rate that is not different, within sampling error, from the “best solution”.

The use of ntree = 5000 and ntreeIterat = 2000 is discussed in longer detail in the references. Essentially, more iterations rarely seem to lead (with 9 different microarray data sets) to improved solutions.

The measure of variable importance used is based on the decrease of classification accuracy when values of a variable in a node of a tree are permuted randomly (see references); we use the unscaled version —see our paper and supplementary material.
Value

An object of class "varSelRF": a list with components:

- **selec.history**
 - A data frame where the selection history is stored. The components are:
 - **Number.Variables** The number of variables examined.
 - **Vars.in.Forest** The actual variables that were in the forest at that stage.
 - **OOB** Out of bag error rate.
 - **sd.OOB** Standard deviation of the error rate.

- **rf.model**
 - The final, selected, random forest (only if `whole.range` = `FALSE`). (If you set `whole.range` = `TRUE`, the final model always contains exactly two variables. This is unlikely to be the forest that interests you).

- **selected.vars**
 - The variables finally selected.

- **selected.model**
 - Same as above, but ordered alphabetically and concatenated with a "+" for easier display.

- **best.model.nvars**
 - The number of variables in the finally selected model.

- **initialImportance**
 - The importances of variables, before any variable deletion.

- **initialOrderedImportances**
 - Same as above but ordered in by decreasing importance.

- **ntree**
 - The `ntree` argument.

- **ntreeIterat**
 - The `ntreeIterat` argument.

- **mtryFactor**
 - The `mtryFactor` argument.

- **firstForest**
 - The first forest (before any variable selection) fitted.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

`randomForest`, `plot.varSelRF`, `varSelRFBoot`
Examples

```r
set.seed(1)
x <- matrix(rnorm(25 * 30), ncol = 30)
colnames(x) <- paste("v", 1:30, sep = "")
x[1:10, 1:2] <- x[1:10, 1:2] + 1
x[1:4, 5] <- x[1:4, 5] - 1.5
x[5:10, 8] <- x[5:10, 8] + 1.4
cl <- factor(c(rep("A", 10), rep("B", 15)))
rfs1 <- varSelRF(x, cl, ntree = 500, ntreeIterat = 300,
                 vars.drop.frac = 0.2)
rfs1
plot(rfs1)

# Note you can use tiny vars.drop.frac
# though you'll rarely want this
rfs1tiny <- varSelRF(x, cl, ntree = 500, ntreeIterat = 300,
                      vars.drop.frac = 0.01)

### Using the final, fitted model to predict other data

# Simulate new data
set.seed(2)
x.new <- matrix(rnorm(25 * 30), ncol = 30)
colnames(x.new) <- paste("v", 1:30, sep = "")
x.new[1:10, 1:2] <- x.new[1:10, 1:2] + 1
x.new[1:10, 5] <- x.new[1:10, 5] - 0.5

# Fit with whole.range = FALSE and keep.forest = TRUE
set.seed(3)
rfs2 <- varSelRF(x, cl, ntree = 3000, ntreeIterat = 2000,
                 vars.drop.frac = 0.3, whole.range = FALSE,
                 keep.forest = TRUE)

# To obtain predictions from a data set, you must specify the
# same variables as those used in the final model
rf.s2$selected.vars

predict(rf.s2$rf.model,
        newdata = subset(x.new, select = rf.s2$selected.vars))
predict(rf.s2$rf.model,
        newdata = subset(x.new, select = rf.s2$selected.vars),
        type = "prob")

# If you had not kept the forest (keep.forest) you could also try
randomForest(y = cl, x = subset(x, select = rf.s2$selected.vars),
             ntree = 3000, ntreeIterat = 2000,
             vars.drop.frac = 0.3, whole.range = FALSE,
             keep.forest = TRUE)
```

varSelRF
ntree = rf.vs2$ntreeIterat,
xtest = subset(x, select = rf.vs2$selected.vars))$test

but here the forest is built new (with only the selected variables)
so results need not be the same

CAUTION: You will NOT want this (these are similar to resubstitution
predictions)
predict(rf.vs2$rf.model, newdata = subset(x, select = rf.vs2$selected.vars))

nor these (read help of predict.randomForest for why these
predictions are different from those from previous command)
predict(rf.vs2$rf.model)

varSelRFBoot

Bootstrap the variable selection procedure in varSelRF

Description

Use the bootstrap to estimate the prediction error rate (with the .632+ rule) and the stability of the variable selection procedure implemented in *varSelRF*.

Usage

```r
varSelRFBoot(xdata, Class, c.sd = 1,
mtryFactor = 1, ntree = 5000, ntreeIterat = 2000,
vars.drop.frac = 0.2, bootnumber = 200,
whole.range = TRUE,
recompute.var.imp = FALSE,
usingCluster = TRUE,
TheCluster = NULL, srf = NULL, verbose = TRUE, ...)
```

Arguments

Most arguments are the same as for *varSelRFBoot*.

- **xdata**: A data frame or matrix, with subjects/cases in rows and variables in columns. NAs not allowed.
- **Class**: The dependent variable; must be a factor.
- **c.sd**: The factor that multiplies the sd. to decide on stopping the iterations or choosing the final solution. See reference for details.
- **mtryFactor**: The multiplication factor of $\sqrt{\text{number of variables}}$ for the number of variables to use for the ntry argument of randomForest.
ntree
The number of trees to use for the first forest; same as ntree for randomForest.

ntreeIterat
The number of trees to use (ntree of randomForest) for all additional forests.

vars.drop.frac
The fraction of variables, from those in the previous forest, to exclude at each iteration.

whole.range
If TRUE continue dropping variables until a forest with only two variables is built, and choose the best model from the complete series of models. If FALSE, stop the iterations if the current OOB error becomes larger than the initial OOB error (plus c.sd*OOB standard error) or if the current OOB error becomes larger than the previous OOB error (plus c.sd*OOB standard error).

recompute.var.imp
If TRUE recompute variable importances at each new iteration.

bootnumber
The number of bootstrap samples to draw.

usingCluster
If TRUE use a cluster to parallelize the calculations.

theCluster
The name of the cluster, if one is used.

srf
An object of class varSelRF. If used, the ntree and mtryFactor parameters are taken from this object, not from the arguments to this function. If used, it allows to skip carrying out a first iteration to build the random forest to the complete, original data set.

verbose
Give more information about what is being done.

NNN
Not used.

Details
If a cluster is used for the calculations, it will be used for the embarrassingly parallelizable task of building as many random forests as bootstrap samples.

Value
An object of class varSelRFBoot, which is a list with components:

- **number.of.boot.samples**
 The number of bootstrap replicates.

- **bootstrap.pred.error**
 The .632+ estimate of the prediction error.

- **leave.one.out.bootstrap**
 The leave-one-out estimate of the error rate (used when computing the .632+ estimate).

- **all.data.randomForest**
 A random forest built from all the data, but after the variable selection. Thus, beware because the OOB error rate is severely biased down.

- **all.data.vars**
 The variables selected in the run with all the data.

- **all.data.run**
 An object of class varSelRF; the one obtained from a run of varSelRF on the original, complete, data set. See varSelRF.
class.predictions
The out-of-bag predictions from the bootstrap, of type "response". See predict.randomForest. This is an array, with dimensions number of cases by number of bootstrap replicates.

prob.predictions
The out-of-bag predictions from the bootstrap, of type "class probability". See predict.randomForest. This is a 3-way array; the last dimension is the bootstrap replication; for each bootstrap replication, the 2D array has dimensions case by number of classes, and each value is the probability of belonging to that class.

number.of.vars
A vector with the number of variables selected for each bootstrap sample.

overlap
The "overlap" between the variables selected from the run in original sample and the variables returned from a bootstrap sample. Overlap between the sets of variables A and B is defined as

$$\frac{|\text{variables.in.A} \cap \text{variables.in.B}|}{\sqrt{|\text{variables.in.A}| |\text{variables.in.B}|}}$$
or size (cardinality) of intersection between the two sets / sqrt(product of size of each set).

all.vars.in.solutions
A vector with all the genes selected in the runs on all the bootstrap samples. If the same gene is selected in several bootstrap runs, it appears multiple times in this vector.

all.solutions
Each solutions is a character vector with all the variables in a particular solution concatenated by a "+". Thus, all.solutions is a vector, with length equal to number.of.bootsamples, of the solution from each bootstrap run.

Class
The original class argument.

allBootRuns
A list of length number.of.bootsamples. Each component of this list is an element of class varSelRF and stores the results from the runs on each bootstrap sample.

Note
The out-of-bag predictions stored in class.predictions and prob.predictions are NOT the OOB votes from random forest itself for a given run. These are predictions from the out-of-bag samples for each bootstrap replication. Thus, these are samples that have not been used at all in any of the variable selection procedures in the given bootstrap replication.

Author(s)
Ramon Diaz-Uriarte <rdiaz02@gmail.com>

References

See Also

`randomForest`, `varSelRF`, `summary.varSelRFBoot`, `plot.varSelRFBoot`,

Examples

```r
## Not run:
## This is a small example, but can take some time.

## make a small cluster, for the sake of illustration
forkCL <- makeForkCluster(2)
clusterSetRNGStream(forkCL, iseed = 123)
clusterEvalQ(forkCL, library(varSelRF))

x <- matrix(rnorm(25 * 30), ncol = 30)
x[1:10, 1:2] <- x[1:10, 1:2] + 2
cl <- factor(c(rep("A", 10), rep("B", 15)))

rf.vsl <- varSelRF(x, cl, ntree = 200, ntreeIterat = 100,
                   vars.drop.frac = 0.2)
rf.vsb <- varSelRFBoot(x, cl,
                      bootnumber = 10,
                      usingCluster = TRUE,
                      srf = rf.vsl,
                      TheCluster = forkCL)

rf.vsb
summary(rf.vsb)
plot(rf.vsb)
stopCluster(forkCL)
```

End(Not run)
Index

*Topic **classif**
 plot.varSelRF, 2
 plot.varSelRFRBoot, 3
 randomVarImpsRF, 5
 randomVarImpsRFplot, 6
 selProbPlot, 9
 summary.varSelRFRBoot, 11
 varSelImpSpecRF, 13
 varSelRF, 15
 varSelRFRBoot, 19

*Topic **tree**
 plot.varSelRF, 2
 plot.varSelRFRBoot, 3
 randomVarImpsRF, 5
 randomVarImpsRFplot, 6
 selProbPlot, 9
 summary.varSelRFRBoot, 11
 varSelImpSpecRF, 13
 varSelRF, 15
 varSelRFRBoot, 19

importance, 3, 5

plot.varSelRF, 2, 17
plot.varSelRFRBoot, 3, 12, 22
predict.randomForest, 21

randomForest, 3–8, 11–14, 17, 22
randomVarImpsRF, 5, 7, 8, 11, 13, 14
randomVarImpsRFplot, 6, 6, 11, 14

selProbPlot, 9
summary.varSelRFRBoot, 4, 11, 22

varSelImpSpecRF, 6, 8, 13
varSelRF, 3, 4, 6, 8, 11, 12, 14, 15, 19–22
varSelRFRBoot, 3, 4, 6, 8, 9, 11, 12, 14, 17, 19, 19