A survey analysis example

Thomas Lumley

November 20, 2013

This document provides a simple example analysis of a survey data set, a subsample from the California Academic Performance Index, an annual set of tests used to evaluate California schools. The API website, including the original data files are at http://api.cde.ca.gov. The subsample was generated as a teaching example by Academic Technology Services at UCLA and was obtained from http://www.ats.ucla.edu/stat/stata/library/svy_survey.htm.

We have a cluster sample in which 15 school districts were sampled and then all schools in each district. This is in the data frame apiclus1, loaded with data(api). The two-stage sample is defined by the sampling unit (dnum) and the population size(fpc). Sampling weights are computed from the population sizes, but could be provided separately.

```r
> library(survey)
> data(api)
> dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
```

The `svydesign` function returns an object containing the survey data and metadata.

```r
> summary(dclus1)
```

1 - level Cluster Sampling design
With (15) clusters.

```
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
```

Probabilities:

```
  Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
```

Population size (PSUs): 757

Data variables:

```
[1] "cds"   "stype"  "name"   "sname"  "snum"  "dname"
[7] "dnum"  "cname"  "cnum"   "flag"   "pcttest" "api00"
[13] "api99"  "target" "growth"  "sch.wide" "comp.imp"  "both"
[19] "awards" "meals"  "ell"     "yr.rnd"  "mobility" "acs.k3"
[25] "acs.46"  "acs.core" "pct.resp" "not.hsg"  "hsq"  "some.col"
[31] "col.grad"  "grad.sch" "avg.ed"  "full"   "emer"    "enroll"
[37] "api.stu"  "fpc"    "pw"
```
We can compute summary statistics to estimate the mean, median, and quartiles of the Academic Performance Index in the year 2000, the number of elementary, middle, and high schools in the state, the total number of students, and the proportion who took the test. Each function takes a formula object describing the variables and a survey design object containing the data.

```r
> svymean(~api00, dclus1)

               mean      SE
api00  644.17  23.542

> svyquantile(~api00, dclus1, quantile=c(0.25,0.5,0.75), ci=TRUE)

$quantiles
        0.25  0.5  0.75
api00  551.75 652  717.5

$CIs
     ,   , api00

        0.25  0.5  0.75
(lower) 493.2835 564.3250 696.0000
(upper) 622.6495 710.8375 761.1355

> svytotal(~stype, dclus1)

            total      SE
stypeE  4873.97  1333.32
stypeH   473.86   158.70
stypeM  846.17   167.55

> svytotal(~enroll, dclus1)

            total      SE
enroll  3404940  932235

> svyratio(~api.stu,~enroll, dclus1)

Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, dclus1)

  Ratios=
     enroll
api.stu  0.8497087

SEs=
     enroll
api.stu  0.008386297
```

The ordinary R subsetting functions [and `subset` work correctly on these survey objects, carrying along the metadata needed for valid standard errors. Here we compute the proportion of high school students who took the test.
> svyratio(~api.stu, ~enroll, design=subset(dclus1, stype="H"))

Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, design = subset(dclus1, stype == "H"))

Ratios=

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>enroll</td>
<td>0.8300683</td>
</tr>
<tr>
<td>api.stu</td>
<td>0.01472607</td>
</tr>
</tbody>
</table>

The warnings referred to in the output occurred because several school districts have only one high school sampled, making the second stage standard error estimation unreliable.

Specifying a large number of variables is made easier by the `make.formula` function

> vars<-names(apiclus1)[c(12:13,16:23,27:37)]
> svymean(make.formula(vars),dclus1,na.rm=TRUE)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>SE</td>
</tr>
<tr>
<td>api00</td>
<td>643.203822 25.4936</td>
</tr>
<tr>
<td>api99</td>
<td>605.490446 25.4987</td>
</tr>
<tr>
<td>sch.wideNo</td>
<td>0.127389 0.0247</td>
</tr>
<tr>
<td>sch.wideYes</td>
<td>0.872611 0.0247</td>
</tr>
<tr>
<td>comp.impNo</td>
<td>0.273885 0.0365</td>
</tr>
<tr>
<td>comp.impYes</td>
<td>0.726115 0.0365</td>
</tr>
<tr>
<td>bothNo</td>
<td>0.273885 0.0365</td>
</tr>
<tr>
<td>bothYes</td>
<td>0.726115 0.0365</td>
</tr>
<tr>
<td>awardsNo</td>
<td>0.299994 0.0397</td>
</tr>
<tr>
<td>awardsYes</td>
<td>0.707006 0.0397</td>
</tr>
<tr>
<td>meals</td>
<td>50.636943 6.6588</td>
</tr>
<tr>
<td>ell</td>
<td>26.891720 2.1567</td>
</tr>
<tr>
<td>yr.rndNo</td>
<td>0.942675 0.0358</td>
</tr>
<tr>
<td>yr.rndYes</td>
<td>0.057325 0.0358</td>
</tr>
<tr>
<td>mobility</td>
<td>17.719745 1.4555</td>
</tr>
<tr>
<td>pct.resp</td>
<td>67.171975 9.6553</td>
</tr>
<tr>
<td>not.hsg</td>
<td>23.082803 3.1976</td>
</tr>
<tr>
<td>hsg</td>
<td>24.847134 1.1167</td>
</tr>
<tr>
<td>some.col</td>
<td>25.210191 1.4709</td>
</tr>
<tr>
<td>col.grad</td>
<td>20.611465 1.7305</td>
</tr>
<tr>
<td>grad.sch</td>
<td>6.229299 1.5361</td>
</tr>
<tr>
<td>avg.ed</td>
<td>2.621529 0.1054</td>
</tr>
<tr>
<td>full</td>
<td>87.127389 2.1624</td>
</tr>
<tr>
<td>emer</td>
<td>10.968153 1.7612</td>
</tr>
<tr>
<td>enroll</td>
<td>573.713376 46.5959</td>
</tr>
<tr>
<td>api.stu</td>
<td>487.318471 41.4182</td>
</tr>
</tbody>
</table>
Summary statistics for subsets can also be computed with `svyby`. Here we compute the average proportion of “English language learners” and of students eligible for subsidized school meals for elementary, middle, and high schools:

```
> svyby(~ell+meals, ~stype, design=dclus1, svymean)
```

<table>
<thead>
<tr>
<th>stype</th>
<th>ell</th>
<th>meals</th>
<th>se.ell</th>
<th>se.meals</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>29.69444</td>
<td>53.09028</td>
<td>1.411617</td>
<td>7.070399</td>
</tr>
<tr>
<td>H</td>
<td>15.00000</td>
<td>37.57143</td>
<td>5.347065</td>
<td>5.912262</td>
</tr>
<tr>
<td>M</td>
<td>22.68000</td>
<td>43.08000</td>
<td>2.952862</td>
<td>6.017110</td>
</tr>
</tbody>
</table>

Regression models show that these socioeconomic variables predict API score and whether the school achieved its API target:

```
> regmodel <- svyglm(api00~ell+meals,design=dclus1)
> logitmodel <- svyglm(I(sch.wide=="Yes")~ell+meals, design=dclus1, family=quasibinomial())
> summary(regmodel)
> summary(logitmodel)
```

Call:
```
svyglm(formula = api00 ~ ell + meals, design = dclus1)
```

Survey design:
```
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
```

Coefficients:

```
(Intercept) 817.1823  18.6709  43.768  1.32e-14 ***
   ell -0.5088  0.3259  -1.561   0.144
  meals -3.1456  0.3018  -10.423  2.29e-07 ***
---
Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y.^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1
```

(Dispersion parameter for gaussian family taken to be 3161.207)

Number of Fisher Scoring iterations: 2

Call:
```
svyglm(formula = I(sch.wide == "Yes") ~ ell + meals, design = dclus1, family = quasibinomial())
```

Survey design:
```
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
```

Coefficients:

```
(Intercept)  1.899557   0.509915   3.725   0.00290 **
```

4
ell 0.039925 0.012443 3.209 0.00751 **
meals -0.019115 0.008825 -2.166 0.05117 .

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y.^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1

(Dispersion parameter for quasibinomial family taken to be 0.9627734)

Number of Fisher Scoring iterations: 5

We can calibrate the sampling using the statewide total for the previous year's API

> gclus1 <- calibrate(dclus1, formula=~api99, population=c(6194, 3914069))

which improves estimation of some quantities

> svymean(~api00, gclus1)

<table>
<thead>
<tr>
<th>mean</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>api00</td>
<td>666.72 3.2959</td>
</tr>
</tbody>
</table>

> svyquantile(~api00, gclus1, quantile=c(0.25,0.5,0.75), ci=TRUE)

$quantiles
<table>
<thead>
<tr>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>api00</td>
<td>592.0652 681.181 736.5414</td>
<td></td>
</tr>
</tbody>
</table>

$CIs
<table>
<thead>
<tr>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lower 553.0472 663.3175 721.1432 upper) 617.0915 696.8528 755.2959</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> svytotal(~stype, gclus1)

<table>
<thead>
<tr>
<th>total</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>stypeE</td>
<td>4881.77 302.15</td>
</tr>
<tr>
<td>stypeH</td>
<td>463.35 183.03</td>
</tr>
<tr>
<td>stypeM</td>
<td>848.88 194.76</td>
</tr>
</tbody>
</table>

> svytotal(~enroll, gclus1)

<table>
<thead>
<tr>
<th>total</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>enroll</td>
<td>3357372 243227</td>
</tr>
</tbody>
</table>

> svyratio(~api.stu,~enroll, gclus1)
Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, gclus1)
Ratios=
 enroll
api.stu 0.8506941
SEs=
 enroll
api.stu 0.008674888