Package ‘mvtnorm’
February 20, 2015

Title Multivariate Normal and t Distributions
Version 1.0-2
Date 2014-12-16
Description Computes multivariate normal and t probabilities, quantiles,
 random deviates and densities.
Imports stats
Depends R(>= 1.9.0)
License GPL-2
URL http://mvtnorm.R-forge.R-project.org
Author Alan Genz [aut],
 Frank Bretz [aut],
 Tetsuhisa Miwa [aut],
 Xuefei Mi [aut],
 Friedrich Leisch [ctb],
 Fabian Scheipl [ctb],
 Bjoern Bornkamp [ctb],
 Martin Maechler [ctb],
 Torsten Hothorn [aut, cre]
Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-12-18 10:22:11

R topics documented:

 algorithms ... 2
 Mvnorm .. 3
 Mvt .. 4
 pmvnorm ... 6
 pmvt ... 8
 qmvnorm .. 12
 qmvtnorm ... 13
Description

Choose between three algorithms for evaluating normal distributions and define hyper parameters.

Usage

GenzBretz(maxpts = 25000, abseps = 0.001, releps = 0)
Miwa(steps = 128)
TVPACK(abseps = 1e-6)

Arguments

- **maxpts**: maximum number of function values as integer. The internal FORTRAN code always uses a minimum number depending on the dimension. (for example 752 for three-dimensional problems).
- **abseps**: absolute error tolerance as double.
- **releps**: relative error tolerance as double.
- **steps**: number of grid points to be evaluated.

Details

There are three algorithms available for evaluating normal probabilities: The default is the randomized Quasi-Monte-Carlo procedure by Genz (1992, 1993) and Genz and Bretz (2002) applicable to arbitrary covariance structures and dimensions up to 1000.

For smaller dimensions (up to 20) and non-singular covariance matrices, the algorithm by Miwa et al. (2003) can be used as well.

For two- and three-dimensional problems and semi-infinite integration region, TVPACK implements an interface to the methods described by Genz (2004).

Value

An object of class GenzBretz or Miwa defining hyper parameters.

References

Mvnorm

Multivariate Normal Density and Random Deviates

Description

These functions provide the density function and a random number generator for the multivariate normal distribution with mean equal to `mean` and covariance matrix `sigma`.

Usage

```r
dmvnorm(x, mean = rep(0, p), sigma = diag(p), log = FALSE)
rmvnorm(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)),
       method=c("eigen", "svd", "chol"), pre0.9.9994 = FALSE)
```

Arguments

- `x`: vector or matrix of quantiles. If `x` is a matrix, each row is taken to be a quantile.
- `n`: number of observations.
- `mean`: mean vector, default is `rep(0, length = ncol(x))`.
- `sigma`: covariance matrix, default is `diag(ncol(x))`.
- `log`: logical; if TRUE, densities `d` are given as `log(d)`.
- `method`: string specifying the matrix decomposition used to determine the matrix root of `sigma`. Possible methods are eigenvalue decomposition ("eigen", default), singular value decomposition ("svd"), and Cholesky decomposition ("chol"). The Cholesky is typically fastest, not by much though.
- `pre0.9.9994`: logical; if FALSE, the output produced in mvtnorm versions up to 0.9-9993 is reproduced. In 0.9-9994, the output is organized such that `rmvnorm(10, ..., 4)` has the same first ten rows as `rmvnorm(100, ..., 4)` when called with the same seed.

Author(s)

Friedrich Leisch and Fabian Scheipl

See Also

`pmvnorm`, `rnorm`, `qmvnorm`

Examples

```r
dmvnorm(x=c(0, 0))
dmvnorm(x=c(0, 0), mean=c(1, 1))

sigma <- matrix(c(4, 2, 2, 3), ncol=2)
x <- rmvnorm(n=500, mean=c(1, 2), sigma=sigma)
colMeans(x)
var(x)

x <- r mvnorm(n=500, mean=c(1, 2), sigma=sigma, method="chol")
colMeans(x)
var(x)
plot(x)
```

Mvtn
The Multivariate t Distribution

Description

These functions provide information about the multivariate *t* distribution with non-centrality parameter (or mode) *δ*, scale matrix *σ* and degrees of freedom *df*. *dmvtn* gives the density and *rmvtn* generates random deviates.

Usage

```r
rmvtn(n, sigma = diag(2), df = 1, delta = rep(0, nrow(sigma)),
      type = c("shifted", "Kshirsagar"), ...)
dmvtn(x, delta = rep(0, p), sigma = diag(p), df = 1, log = TRUE,
      type = "shifted")
```

Arguments

- **x**
 vector or matrix of quantiles. If *x* is a matrix, each row is taken to be a quantile.

- **n**
 number of observations.

- **delta**
 the vector of noncentrality parameters of length *n*, for type = "shifted" *δ* specifies the mode.

- **sigma**
 scale matrix, defaults to diag(ncol(x)).

- **df**
 degrees of freedom. *df* = 0 or *df* = Inf corresponds to the multivariate normal distribution.

- **log**
 logical indicating whether densities *d* are given as log(*d*).

- **type**
 type of the noncentral multivariate *t* distribution. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral *t*-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type = "shifted" corresponds to the formula right before formula (1.4) in
Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide. Note that the defaults differ from the default in \texttt{pmvt()} (for reasons of backward compatibility).

Additional arguments to \texttt{rmvnorm()}, for example method.

Details

If X denotes a random vector following a t distribution with location vector 0 and scale matrix Σ (written $X \sim t_\nu(0, \Sigma)$), the scale matrix (the argument \texttt{sigma}) is not equal to the covariance matrix $\text{Cov}(X)$ of X. If the degrees of freedom ν (the argument \texttt{df}) is larger than 2, then $\text{Cov}(X) = \Sigma \nu/(\nu - 2)$. Furthermore, in this case the correlation matrix $\text{Cor}(X)$ equals the correlation matrix corresponding to the scale matrix Σ (which can be computed with \texttt{cov2cor()}). Note that the scale matrix is sometimes referred to as “dispersion matrix”; see McNeil, Frey, Embrechts (2005, p. 74).

For \texttt{type} = "shifted" the density

$$c(1 + (x - \delta)'S^{-1}(x - \delta)/\nu)^{-(\nu+m)/2}$$

is implemented, where

$$c = \Gamma((\nu + m)/2)/((\pi \nu)^{m/2} \Gamma(\nu/2) |S|^{1/2}),$$

S is a positive definite symmetric matrix (the matrix \texttt{sigma} above), δ is the non-centrality vector and ν are the degrees of freedom.

\texttt{df=}0 historically leads to the multivariate normal distribution. From a mathematical point of view, rather \texttt{df=}Inf corresponds to the multivariate normal distribution. This is (now) also allowed for \texttt{rmvt()} and \texttt{dmvt()}.

Note that \texttt{dmvt()} has default \texttt{log = TRUE}, whereas \texttt{dmvnorm()} has default \texttt{log = FALSE}.

References

See Also

\texttt{pmvt()} and \texttt{qmvt()}.

Examples

```r
## basic evaluation
dmvt(x = c(0,0), sigma = diag(2))

## check behavior for df=0 and df=Inf
x <- c(1.23, 4.56)
mu <- 1:2
Sigma <- diag(2)
x0 <- dmvt(x, delta = mu, sigma = Sigma, df = 0) # default log = TRUE!
```
pmvnorm

Multivariate Normal Distribution

Description
Computes the distribution function of the multivariate normal distribution for arbitrary limits and correlation matrices.

Usage

pmvnorm(lower=-Inf, upper=Inf, mean=rep(0, length(lower)),
 corr=NULL, sigma=NULL, algorithm = GenzBretz(), ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>the vector of lower limits of length n.</td>
</tr>
<tr>
<td>upper</td>
<td>the vector of upper limits of length n.</td>
</tr>
<tr>
<td>mean</td>
<td>the mean vector of length n.</td>
</tr>
<tr>
<td>corr</td>
<td>the correlation matrix of dimension n.</td>
</tr>
<tr>
<td>sigma</td>
<td>the covariance matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.</td>
</tr>
</tbody>
</table>
pmvnorm

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to be used as well as the associated hyper parameters.

... additional parameters (currently given to GenzBretz for backward compatibility issues).

Details

This program involves the computation of multivariate normal probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The implemented methodology is described in Genz (1992, 1993) (for algorithm GenzBretz), in Miwa et al. (2003) for algorithm Miwa (useful up to dimension 20) and Genz (2004) for the TVPACK algorithm (which covers 2- and 3-dimensional problems for semi-infinite integration regions).

Note that both –Inf and +Inf may be specified in lower and upper. For more details see pmvt.

The multivariate normal case is treated as a special case of pmvt with df=0 and univariate problems are passed to pnorm.

The multivariate normal density and random deviates are available using dmvnorm and rmvnorm.

Value

The evaluated distribution function is returned with attributes

error estimated absolute error and

msg status messages.

Source

http://www.sci.wsu.edu/math/faculty/genz/homepage

References

See Also

qmvnorm
Examples

```r
n <- 5
mean <- rep(0, 5)
lower <- rep(-1, 5)
upper <- rep(3, 5)
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
corr[upper.tri(corr)] <- 0.5
prob <- pmvnorm(lower, upper, mean, corr)
print(prob)

stopifnot(pmvnorm(lower=-Inf, upper=3, mean=0, sigma=1) == pnorm(3))

a <- pmvnorm(lower=-Inf, upper=c(1, .5), mean=c(2, 4), diag(2))
stopifnot(round(a, 16) == round(prod(pnorm(c(1, .5), c(2, 4))), 16))

m <- 3
sigma <- diag(3)
sigma[2,1] <- 3/5
sigma[3,1] <- 1/3
sigma[3,2] <- 11/15
pmvnorm(lower=rep(-Inf, m), upper=c(1, 4, 2), mean=rep(0, m), corr=sigma)

# Correlation and Covariance

a <- pmvnorm(lower=-Inf, upper=c(2, 2), sigma = diag(2)*2)
b <- pmvnorm(lower=-Inf, upper=c(2, 2)/sqrt(2), corr=diag(2))
stopifnot(all.equal(round(a, 5), round(b, 5)))
```

pmvt

Multivariate t Distribution

Description

Computes the distribution function of the multivariate t distribution for arbitrary limits, degrees of freedom and correlation matrices based on algorithms by Genz and Bretz.

Usage

```r
pmvt(lower=-Inf, upper=Inf, delta=rep(0, length(lower)),
     df=1, corr=NULL, sigma=NULL, algorithm = GenzBretz(),
     type = c("Kshirsagar", "shifted"), ...)```
Arguments

lower  the vector of lower limits of length n.
upper  the vector of upper limits of length n.
delta  the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode.
df    degree of freedom as integer. Normal probabilities are computed for df=0.
corr  the correlation matrix of dimension n.
sigma the scale matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix is used for sigma.
algorithm an object of class GenzBretz or TVPACK defining the hyper parameters of this algorithm.
type   type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)). This is the noncentral t-distribution needed for calculating the power of multiple contrast tests under a normality assumption. type = "shifted" corresponds to the formula right before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)). It is a location shifted version of the central t-distribution. This noncentral multivariate t distribution appears for example as the Bayesian posterior distribution for the regression coefficients in a linear regression. In the central case both types coincide.

... additional parameters (currently given to GenzBretz for backward compatibility issues).

Details

This program involves the computation of central and noncentral multivariate t-probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The methodology is based on randomized quasi Monte Carlo methods and described in Genz and Bretz (1999, 2002).

For 2- and 3-dimensional problems one can also use the TVPACK routines described by Genz (2004), which only handles semi-infinite integration regions (and for type = "Kshirsagar" only central problems).

For type = "Kshirsagar" and a given correlation matrix corr, for short A, say, (which has to be positive semi-definite) and degrees of freedom \( \nu \) the following values are numerically evaluated

\[
I = 2^{1-\nu/2}/\Gamma(\nu/2) \int_{0}^{\infty} s^{\nu-1} \exp(-s^2/2) \Phi(s \cdot \text{lower}/\sqrt{\nu - \delta}, s \cdot \text{upper}/\sqrt{\nu - \delta}) \, ds
\]

where

\[
\Phi(a, b) = (\text{det}(A)(2\pi)^m)^{-1/2} \int_{a}^{b} \exp(-x^T A x / 2) \, dx
\]
is the multivariate normal distribution and \( m \) is the number of rows of \( A \).

For type = "shifted", a positive definite symmetric matrix \( S \) (which might be the correlation or
the scale matrix), mode (vector) \( \delta \) and degrees of freedom \( \nu \) the following integral is evaluated:

\[
c \prod_{i=1}^{m} \int_{lower_i}^{upper_i} (1 + (x - \delta)^T S^{-1} (x - \delta) / \nu)^{-\nu/(\nu+m)/2} \, dx_1 \cdots dx_m,
\]

where

\[
c = \Gamma((\nu + m)/2)/(\pi^m \nu^{m/2} \Gamma(\nu/2)|S|^{1/2}),
\]

and \( m \) is the number of rows of \( S \).

Note that both \(-Inf\) and \(+Inf\) may be specified in the lower and upper integral limits in order to compute one-sided probabilities.

Univariate problems are passed to \texttt{pt}. If \( df = 0 \), normal probabilities are returned.

**Value**

The evaluated distribution function is returned with attributes

- \texttt{error} estimated absolute error and
- \texttt{msg} status messages.

**Source**

http://www.sci.wsu.edu/math/faculty/genz/homepage

**References**


**See Also**

\texttt{qmvt}
Examples

```r
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
prob <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)
print(prob)

pmvt(lower=-Inf, upper=3, df = 3, sigma = 1) == pt(3, 3)

Example from R News paper (original by Edwards and Berry, 1987)
n <- c(26, 24, 20, 33, 32)
V <- diag(1/n)
df <- 130
C <- c(1,1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0)
C <- matrix(C, ncol=5)
scale matrix
cv <- C %*% V %*% t(C)
correlation matrix
dv <- t(1/sqrt(diag(cv)))

cr <- cv * (t(dv) %*% dv)
delta <- rep(0, 5)

myfct <- function(q, alpha) {
 lower <- rep(q, ncol(cv))
 upper <- rep(q, ncol(cv))
 pmvt(lower=lower, upper=upper, delta=delta, df=df,
 corr=cr, abseps=0.0001) - alpha
}

round(unroot(myfct, lower=1, upper=5, alpha=0.95)$root, 3)

compare pmvt and pmvnorm for large df:
a <- pmvnorm(lower=-Inf, upper=1, mean=rep(0, 5), corr=diag(5))
b <- pmvt(lower=-Inf, upper=1, delta=rep(0, 5), df=rep(300,5),
 corr=diag(5))
a
b

stopifnot(round(a, 2) == round(b, 2))

correlation and scale matrix
a <- pmvt(lower=-Inf, upper=2, delta=rep(0,5), df=3,
 sigma = diag(5)*2)
b <- pmvt(lower=-Inf, upper=2/sqrt(2), delta=rep(0,5),
```
```r
qmvnorm

Quantiles of the Multivariate Normal Distribution

Description

Computes the equicoordinate quantile function of the multivariate normal distribution for arbitrary correlation matrices based on inversion of pmvnorm.

Usage

qmvnorm(p, interval = NULL, tail = c("lower.tail", "upper.tail", "both.tails"), mean = 0, corr = NULL, sigma = NULL, algorithm = GenzBretz(), ...)

Arguments

p probability.

interval optional, a vector containing the end-points of the interval to be searched by uniroot.

tail specifies which quantiles should be computed. lower.tail gives the quantile \(x \) for which \(P[X \leq x] = p \), upper.tail gives \(x \) with \(P[X > x] = p \) and both.tails leads to \(x \) with \(P[-x \leq X \leq x] = p \).

mean the mean vector of length \(n \).

corr the correlation matrix of dimension \(n \).

sigma the covariance matrix of dimension \(n \). Either \(corr \) or \(sigma \) can be specified. If \(sigma \) is given, the problem is standardized. If neither \(corr \) nor \(sigma \) is given, the identity matrix is used for \(sigma \).

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to be used as well as the associated hyper parameters.

... additional parameters to be passed to GenzBretz.
```
Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each dimension coincide. Currently, the distribution function is inverted by using the `uniroot` function which may result in limited accuracy of the quantiles.

Value

A list with four components: quantile and f.quantile give the location of the quantile and the value of the function evaluated at that point. iter and estim.prep give the number of iterations used and an approximate estimated precision from `uniroot`.

See Also

`pmvnorm, qmvt`

Examples

```r
qmvt(0.95, sigma = diag(2), tail = "both")
```

---

**qmvt**

*Quantiles of the Multivariate t Distribution*

Description

Computes the equicoordinate quantile function of the multivariate t distribution for arbitrary correlation matrices based on inversion of `qmvt`.

Usage

```r
qmvt(p, interval = NULL, tail = c("lower.tail", "upper.tail", "both.tails"), df = 1, delta = 0, corr = NULL, sigma = NULL, algorithm = GenzBretz(), type = c("Kshirsagar", "shifted"), ...)
```

Arguments

- **p** probability.
- **interval** optional, a vector containing the end-points of the interval to be searched by `uniroot`.
- **tail** specifies which quantiles should be computed. lower.tail gives the quantile x for which \( P[X \leq x] = p \), upper.tail gives x with \( P[X > x] = p \) and both.tails leads to x with \( P[-x \leq X \leq x] = p \).
- **delta** the vector of noncentrality parameters of length n, for type = "shifted" delta specifies the mode.
- **df** degree of freedom as integer. Normal quantiles are computed for df = 0 or df = Inf.
corr the correlation matrix of dimension n.
sigma the covariance matrix of dimension n. Either corr or sigma can be specified. If sigma is given, the problem is standardized. If neither corr nor sigma is given, the identity matrix in the univariate case (so corr = 1) is used for corr.
algorithm an object of class GenzBretz or TVPACK defining the hyper parameters of this algorithm.
type type of the noncentral multivariate t distribution to be computed. type = "Kshirsagar" corresponds to formula (1.4) in Genz and Bretz (2009) (see also Chapter 5.1 in Kotz and Nadarajah (2004)) and type = "shifted" corresponds to the formula before formula (1.4) in Genz and Bretz (2009) (see also formula (1.1) in Kotz and Nadarajah (2004)).

... additional parameters to be passed to GenzBretz.

Details

Only equicoordinate quantiles are computed, i.e., the quantiles in each dimension coincide. Currently, the distribution function is inverted by using the uniroot function which may result in limited accuracy of the quantiles.

Value

A list with four components: quantile and fNquantile give the location of the quantile and the value of the function evaluated at that point. iter and estim.prec give the number of iterations used and an approximate estimated precision from uniroot.

See Also

pmvnorm, qmvnorm

Examples

```r
basic evaluation
qmvt(0.95, df = 16, tail = "both")

check behavior for df=0 and df=Inf
Sigma <- diag(2)
q0 <- qmvt(0.95, sigma = Sigma, df = 0, tail = "both")$quantile
q8 <- qmvt(0.95, sigma = Sigma, df = Inf, tail = "both")$quantile
qn <- qmvnorm(0.95, sigma = Sigma, tail = "both")$quantile
stopifnot(identical(q0, q8),
 identical(q0, qn))

if neither sigma nor corr are provided, corr = 1 is used internally
df <- 0
qt95 <- qmvt(0.95, df = df, tail = "both")$quantile
stopifnot(identical(qt95, qmvt(0.95, df = df, corr = 1, tail = "both")$quantile),
 identical(qt95, qmvt(0.95, df = df, sigma = 1, tail = "both")$quantile))
df <- 4
qt95 <- qmvt(0.95, df = df, tail = "both")$quantile
stopifnot(identical(qt95, qmvt(0.95, df = df, corr = 1, tail = "both")$quantile),
 identical(qt95, qmvt(0.95, df = df, sigma = 1, tail = "both")$quantile),
 identical(qt95, qmvnorm(0.95, sigma = Sigma, tail = "both")$quantile))
```
identical(qt95, qmvtn(0.95, df = df, sigma = 1, tail = "both")$quantile)
Index

*Topic distribution
  algorithms, 2
  Mvnorm, 3
  Mvt, 4
  pmvnorm, 6
  pmvt, 8
  qmvnorm, 12
  qmvt, 13

*Topic multivariate
  Mvnorm, 3
  Mvt, 4
  cov2cor, 5
  dmvnorm, 5, 7
  dmvnorm (Mvnorm), 3
  dmv (Mvt), 4
  GenzBretz, 7, 9, 12, 14
  GenzBretz (algorithms), 2
  logical, 4
  Miwa, 7, 12
  Miwa (algorithms), 2
  Mvnorm, 3
  Mvt, 4
  pmvnorm, 3, 6, 13, 14
  pmvt, 5, 7, 8
  pnorm, 7
  pt, 10
  qmvnorm, 3, 7, 12, 14
  qmvt, 5, 10, 13, 14
  rmvnorm, 5, 7
  rmvnorm (Mvnorm), 3
  rmvt (Mvt), 4

rnorm, 3
TVPACK, 7, 9, 12, 14
TVPACK (algorithms), 2
uniroot, 12–14