Package ‘ibr’

May 1, 2017

Version 2.0-3
Date 2017-04-28
Title Iterative Bias Reduction
Author Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober
Maintainer Pierre-Andre Cornillon <pierre andre cornillon@univ-rennes2.fr>
Depends R (>= 2.11.1), mgcv
Imports stats, graphics
Description Multivariate smoothing using iterative bias reduction with kernel, thin plate splines, Duchon splines or low rank splines.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-05-01 21:23:16 UTC

R topics documented:

 ibr-package .. 2
 AIC.ibr ... 4
 betaA .. 5
 betaS1 .. 6
 betaS1lr ... 7
 BIC ... 8
 bwchoice ... 9
 calcA .. 10
 cvobs .. 11
 departnoyau ... 12
 dssmoother ... 13
 dsSx ... 14
 DuchonQ ... 15
 DuchonS .. 16
 fittedA ... 16
 fittedS1 ... 18
Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fittedS1lr</td>
<td>19</td>
</tr>
<tr>
<td>forward</td>
<td>20</td>
</tr>
<tr>
<td>ibr</td>
<td>23</td>
</tr>
<tr>
<td>ibr.fit</td>
<td>27</td>
</tr>
<tr>
<td>iterchoiceA</td>
<td>31</td>
</tr>
<tr>
<td>iterchoiceAcv</td>
<td>32</td>
</tr>
<tr>
<td>iterchoiceAcve</td>
<td>34</td>
</tr>
<tr>
<td>iterchoiceAe</td>
<td>35</td>
</tr>
<tr>
<td>iterchoiceS1</td>
<td>36</td>
</tr>
<tr>
<td>iterchoiceS1cv</td>
<td>38</td>
</tr>
<tr>
<td>iterchoiceS1cve</td>
<td>39</td>
</tr>
<tr>
<td>iterchoiceS1e</td>
<td>41</td>
</tr>
<tr>
<td>iterchoiceS1lrcv</td>
<td>42</td>
</tr>
<tr>
<td>iterchoiceS1lrcve</td>
<td>44</td>
</tr>
<tr>
<td>iterchoiceS1e</td>
<td>41</td>
</tr>
<tr>
<td>kernel</td>
<td>45</td>
</tr>
<tr>
<td>kernelSx</td>
<td>46</td>
</tr>
<tr>
<td>lambdachoice</td>
<td>47</td>
</tr>
<tr>
<td>lambdachoicelr</td>
<td>48</td>
</tr>
<tr>
<td>lrsmoother</td>
<td>49</td>
</tr>
<tr>
<td>npregress</td>
<td>50</td>
</tr>
<tr>
<td>ozone</td>
<td>52</td>
</tr>
<tr>
<td>plot.forwardibr</td>
<td>52</td>
</tr>
<tr>
<td>plot.ibr</td>
<td>54</td>
</tr>
<tr>
<td>poids</td>
<td>55</td>
</tr>
<tr>
<td>predict.ibr</td>
<td>55</td>
</tr>
<tr>
<td>predict.npregress</td>
<td>57</td>
</tr>
<tr>
<td>print.summary.ibr</td>
<td>58</td>
</tr>
<tr>
<td>print.summary.npregress</td>
<td>59</td>
</tr>
<tr>
<td>summary.ibr</td>
<td>60</td>
</tr>
<tr>
<td>summary.npregress</td>
<td>61</td>
</tr>
<tr>
<td>sumvalpr</td>
<td>62</td>
</tr>
<tr>
<td>tracekernel</td>
<td>63</td>
</tr>
</tbody>
</table>

Description

an R package for multivariate smoothing using Iterative Bias Reduction smoother.
Details

- We are interested in smoothing (the values of) a vector of \(n \) observations \(y \) by \(d \) covariates measured at the same \(n \) observations (gathered in the matrix \(X \)). The iterated Bias Reduction produces a sequence of smoothers

\[
\hat{y} = S_k y = (I - (I - S)^k)y,
\]

where \(S \) is the pilot smoother which can be either a kernel or a thin plate spline smoother. In case of a kernel smoother, the kernel is built as a product of univariate kernels.

- The most important parameter of the iterated bias reduction is \(k \) the number of iterations. Usually this parameter is unknown and is chosen from the search grid \(K \) to minimize the criterion (GCV, AIC, AICc, BIC or gMDL).

The user must choose the pilot smoother (kernel “k”, thin plate splines “tps” or Duchon splines “ds”) plus the values of bandwidths (kernel) or \(\lambda \) thin plate splines). As the choice of these raw values depend on each particular dataset, one can rely on effective degrees of freedom or default values given as degree of freedom, see argument \(\text{df} \) of the main function \texttt{ibr}.

Index of functions to be used by end user:

- \texttt{ibr}: Iterative bias reduction smoothing
- \texttt{plot.ibr}: Plot diagnostic for an ibr object
- \texttt{predict.ibr}: Predicted values using iterative bias reduction smoothers
- \texttt{forward}: Variable selection for ibr (forward method)
- \texttt{print.summary.ibr}: Printing iterative bias reduction summaries
- \texttt{summary.ibr}: Summarizing iterative bias reduction fits

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober

Maintainer: Pierre-Andre Cornillon <pierre-andre.cornillon@supagro.inra.fr>

Examples

```R
## Not run:
data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,-1], ozone[,1], smoother="k", df=1.1)
summary(res.ibr)
predict(res.ibr)
plot(res.ibr)
## End(Not run)
```
Summary of iterative bias reduction fits

Description

Generic function calculating the Akaike information criterion for one model objects of ibr class for which a log-likelihood value can be obtained, according to the formula $-2 \log(\sigma^2) + k df / n$, where df represents the effective degree of freedom (trace) of the smoother in the fitted model, and $k = 2$ for the usual AIC, or $k = \log(n)$ (n the number of observations) for the so-called BIC or SBC (Schwarz’s Bayesian criterion).

Usage

```r
## S3 method for class 'ibr'
AIC(object, ..., k = 2)
```

Arguments

- `object`: A fitted model object of class ibr.
- `...`: Not used.
- `k`: Numeric, the penalty per parameter to be used; the default $k = 2$ is the classical AIC.

Details

The ibr method for AIC, `AIC.ibr()`, calculates $\log(\sigma^2) + 2 * df / n$, where df is the trace of the smoother.

Value

returns a numeric value with the corresponding AIC (or BIC, or ..., depending on k).

Author(s)

References

See Also

`ibr`, `summary.ibr`
Calculates coefficients for iterative bias reduction smoothers

Description

Calculates the coefficients for the iterative bias reduction smoothers. This function is not intended to be used directly.

Usage

```r
betaA(n, eigenvaluesA, tPAPdemiy, DdemiPA, ddlmini, k, index0)
```

Arguments

- `n`: The number of observations.
- `eigenvaluesA`: Vector of the eigenvalues of the symmetric matrix A.
- `tPAPdemiy`: The transpose of the matrix of eigen vectors of the symmetric matrix A times the inverse of the square root of the diagonal matrix D.
- `DdemiPA`: The square root of the diagonal matrix D times the eigen vectors of the symmetric matrix A.
- `ddlmini`: The number of eigenvalues (numerically) equals to 1.
- `k`: A scalar which gives the number of iterations.
- `index0`: The index of the first eigen values of S numerically equal to 0.

Details

See the reference for detailed explanation of A and D and the meaning of coefficients.

Value

Returns the vector of coefficients (of length n, the number of observations.)

Author(s)

References

See Also

ibr

betaS1

Coefficients for iterative bias reduction method.

Description

The function evaluates the smoothing matrix H, the matrices Q and S and their associated coefficients c and s. This function is not intended to be used directly.

Usage

```r
betaS1(n,U,tUy,eigenvaluesS1,ddlmini,k,lambda,Sgu,Qgu,index0)
```

Arguments

- `n` The number of observations.
- `U` The the matrix of eigen vectors of the symmetric smoothing matrix S.
- `tUy` The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.
- `eigenvaluesS1` Vector of the eigenvalues of the symmetric smoothing matrix S.
- `ddlmini` The number of eigen values of S equal to 1.
- `k` A numeric vector which give the number of iterations.
- `lambda` The smoothness coefficient lambda for thin plate splines of order m.
- `Sgu` The matrix of the polynomial null space S.
- `Qgu` The matrix of the semi kernel (or radial basis) Q.
- `index0` The index of the first eigen values of S numerically equal to 0.

Details

See the reference for detailed explanation of Q (the semi kernel or radial basis) and S (the polynomial null space).
Value

Returns a list containing of coefficients for the null space of the semi-kernel.

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

See Also

ibr

betaS1lr

Coefficients for iterative bias reduction method.

Description

The function evaluates the smoothing matrix H, the matrices Q and S and their associated coefficients c and s. This function is not intended to be used directly.

Usage

betaS1lr(n, U, tUy, eigenvaluesS1,ddlmini,k,lambda,rank,Rm1U,index0)

Arguments

- **n**: The number of observations.
- **U**: The matrix of eigen vectors of the symmetric smoothing matrix S.
- **tUy**: The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.
- **eigenvaluesS1**: Vector of the eigenvalues of the symmetric smoothing matrix S.
- **ddlmini**: The number of eigen values of S equal to 1.
- **k**: A numeric vector which give the number of iterations.
- **lambda**: The smoothness coefficient lambda for thin plate splines of order m.
- **rank**: The rank of lowrank splines.
- **Rm1U**: matrix $R^{-1}U$ (see reference).
- **index0**: The index of the first eigen values of S numerically equal to 0.

Details

See the reference for detailed explanation of Q (the semi kernel or radial basis) and S (the polynomial null space).
Value

Returns beta

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

See Also

ibr

BIC Information Criterion for ibr

Description

Functions calculating the Bayesian Informative Criterion, the Generalized Cross Validation criterion and the Corrected Akaike information criterion.

Usage

S3 method for class 'ibr'
BIC(object, ...)

S3 method for class 'ibr'
GCV(object, ...)

S3 method for class 'ibr'
AICc(object, ...)

Arguments

object A fitted model object of class ibr.

... Only for compatibility purpose with BIC of nlme package.

Details

The ibr method for BIC, BIC.ibr() calculates \(\log(\sigma^2) + \log(n) \times df/n \), where \(df \) is the trace of the smoother.

The ibr method for GCV, GCV.ibr() calculates \(\log(\sigma^2) - 2 \times \log(1 - df/n) \)

The ibr method for AICc, AICc.ibr() calculates \(\log(\sigma^2) + 1 + (2 \times (df + 1))/(n - df - 2) \).
Value

Returns a numeric value with the corresponding BIC, GCV or AICc.

Author(s)

References

See Also

ibr, summary.ibr

Examples

```r
## Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[, -1], ozone[, 1])
BIC(res.ibr)
GCV(res.ibr)
AICc(res.ibr)

## End(Not run)
```

bwchoice

Choice of bandwidth achieving a prescribed effective degree of freedom

Description

Perform a search for the bandwidths in the given grid. For each explanatory variable, the bandwidth is chosen such that the trace of the smoothing matrix according to that variable (effective degree of freedom) is equal to a prescribed value. This function is not intended to be used directly.

Usage

`bwchoice(X, objectif, kernelx="g", itermx=1000)`

Arguments

- **X** A matrix with n rows (individuals) and p columns (numeric variables).
- **objectif** A numeric vector of either length 1 or length equal to the number of columns of X. It indicates the desired effective degree of freedom (trace) of the smoothing matrix for each variable. objectif is repeated when the length of vector objectif is 1.
kernel
String which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").

itermax
A scalar which controls the number of iterations for that search.

Value
Returns a vector of length d, the number of explanatory variable, where each coordinate is the value of the selected bandwidth for each explanatory variable.

Author(s)

See Also
ibr
calca

Description
Calculates the decomposition of the kernel smoothing matrix in two parts: a diagonal matrix D and a symmetric matrix A. This function is not intended to be used directly.

Usage
`calcA(X, bx, kernelx="g")`

Arguments
- **X**
The matrix of explanatory variables, size n, p.
- **bx**
The vector of bandwidth of length p.
- **kernelx**
Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").

Details
see the reference for detailed explanation of A and D and the meaning of coefficients.

Value
Returns a list containing two matrices: the symmetric matrix A in component A) and the square root of the diagonal matrix D in the component `demi` and the trace of the smoother in the component `df`.
Author(s)

See Also

ibr

cvobs

Selection of the number of iterations for iterative bias reduction smoothers

Description

The function cvobs gives the index of observations in each test set. This function is not intended to be used directly.

Usage

cvobs(n, ntest, ntrain, Kfold, type =
c(“random”, “timeseries”, “consecutive”, “interleaved”), npermute, seed)

Arguments

n The total number of observations.
ntest The number of observations in test set.
ntrain The number of observations in training set.
Kfold Either the number of folds or a boolean or NULL.
type A character string in random, timeseries, consecutive, interleaved and give the type of segments.
npermute The number of random draw (with replacement), used for type=”random”.
seed Controls the seed of random generator (via set.seed).

Value

Returns a list with in each component the index of observations to be used as a test set.

Author(s)

Referências

See Also

 ibr

departnoyau

Trace of the product kernel smoother

Descrição

Search bandwidth for each univariate kernel smoother such that the product of these univariate kernel gives a kernel smoother with a chosen effective degree of freedom (trace of the smoother). The bandwidths are constrained to give, for each explanatory variable, a kernel smoother with same trace as the others. This function is not intended to be used directly.

Usage

departnoyau(df, x, kernel, dftobwitmax, n, p, dfobjectif)

Arguments

df A numeric vector giving the effective degree of freedom (trace) of the univariate smoothing matrix for each variable of x.

x Matrix of explanatory variables, size n, p.

kernel Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").

dftobwitmax Specifies the maximum number of iterations transmitted to *uniroot* function.

n Number of rows of data matrix x.

p Number of columns of data matrix x.

dfobjectif A numeric vector of length 1 which indicates the desired effective degree of freedom (trace) of the smoothing matrix (product kernel smoother) for x.

Value

Returns the desired bandwidths.
dssmoother

Author(s)

See Also

ibr

dssmoother | Evaluate the smoothing matrix, the radial basis matrix, the polynomial matrix and their associated coefficients

Description

The function evaluates the smoothing matrix h, the matrices Q and S and their associated coefficients c and s. This function is not intended to be used directly.

Usage

dssmoother(X,Y=NULL,lambda,m,s)

Arguments

X Matrix of explanatory variables, size n,p.
Y Vector of response variable. If null, only the smoothing matrix is returned.
lambda The smoothness coefficient lambda for thin plate splines of order m.
m The order of derivatives for the penalty (for thin plate splines it is the order). This integer m must verify $2m+2s/d>1$, where d is the number of explanatory variables.
s The power of weighting function. For thin plate splines s is equal to 0. This real must be strictly smaller than $d/2$ (where d is the number of explanatory variables) and must verify $2m+2s/d$. To get pseudo-cubic splines, choose $m=2$ and $s=(d-1)/2$ (See Duchon, 1977).

Details

see the reference for detailed explanation of Q (the semi kernel or radial basis) and S (the polynomial null space).

Value

Returns a list containing the smoothing matrix H, and two matrices denoted S_{gu} (for null space) and Q_{gu}.

Author(s)

Pierre-André Cornillon, Nicolas Hengartner and Eric Matzner-Lober
References

See Also

ibr

dSx

Evaluate the smoothing matrix at any point

Description

The function evaluates the matrix Q and S related to the explanatory variables X at any points. This function is not intended to be used directly.

Usage

dSx(X,Xetoile,m=2,s=0)

Arguments

- **X**: Matrix of explanatory variables, size n,p.
- **Xetoile**: Matrix of new observations with the same number of variables as X, size m,p.
- **m**: The order of derivatives for the penalty (for thin plate splines it is the order). This integer m must verify $2m+2s/d>1$, where d is the number of explanatory variables.
- **s**: The power of weighting function. For thin plate splines s is equal to 0. This real must be strictly smaller than $d/2$ (where d is the number of explanatory variables) and must verify $2m+2s/d$. To get pseudo-cubic splines, choose $m=2$ and $s=(d-1)/2$ (See Duchon, 1977).

Details

see the reference for detailed explanation of Q (the semi kernel) and S (the polynomial null space).

Value

Returns a list containing two matrices denoted S_{gu} (for null space) and Q_{gu}

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober
References

See Also

ibr

DuchonQ

Computes the semi-kernel of Duchon splines

Description

The function DuchonQ computes the semi-kernel of Duchon splines. This function is not intended to be used directly.

Usage

DuchonQ(x, xk, m=2, s=0, symmetric=TRUE)

Arguments

x A numeric matrix of explanatory variables, with n rows and p columns.

xk A numeric matrix of explanatory variables, with nk rows and p columns.

m Order of derivatives.

s Exponent for the weight function.

symmetric Boolean: if TRUE only x is used and it computes the semi-kernel at observations of x (it should give the same result as DuchonQ(x, xk, m, s, FALSE)).

Value

The semi-kernel evaluated.

Author(s)

References

See Also

ibr
DuchonS \hspace{1cm} Computes the semi-kernel of Duchon splines

Description

The function DuchonS computes the semi-kernel of Duchon splines. This function is not intended to be used directly.

Usage

DuchonS(x, m=2)

Arguments

- **x**: A numeric matrix of explanatory variables, with \(n \) rows and \(p \) columns.
- **m**: Order of derivatives.

Value

The polynomial part evaluated.

Author(s)

References

See Also

ibr

fittedA \hspace{1cm} Evaluates the fits for iterative bias reduction method

Description

Evaluates the fits for the iterative bias reduction smoother, using a kernel smoother and its decomposition into a symmetric matrix and a diagonal matrix. This function is not intended to be used directly.
Usage

fittedA(n, eigenvaluesA, tPADmdemiY, DdemiPA, ddlmini, k)

Arguments

n
The number of observations.

eigenvaluesA
Vector of the eigenvalues of the symmetric matrix A.

tPADmdemiY
The transpose of the matrix of eigen vectors of the symmetric matrix A times the inverse of the square root of the diagonal matrix D.

DdemiPA
The square root of the diagonal matrix D times the eigen vectors of the symmetric matrix A.

ddlmini
The number of eigenvalues (numerically) equals to 1.

k
A scalar which gives the number of iterations.

Details

See the reference for detailed explanation of A and D.

Value

Returns a list of two components: fitted contains fitted values and trace contains the trace (effective degree of freedom) of the iterated bias reduction smoother.

Author(s)

References

See Also

ibr
Evaluate the fit for iterative bias reduction model

Description

The function evaluates the fit for iterative bias reduction model for iteration k. This function is not intended to be used directly.

Usage

fittedS1(n, U, tUy, eigenvaluesS1, ddlmini, k)

Arguments

n The number of observations.
U The the matrix of eigen vectors of the symmetric smoothing matrix S.
tUy The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.
eigenvaluesS1 Vector of the eigenvalues of the symmetric smoothing matrix S.
ddlmini The number of eigen values of S equal to 1.
k A numeric vector which gives the number of iterations

Details

see the reference for detailed explanation of computation of iterative bias reduction smoother

Value

Returns a vector containing the fit

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

See Also

ibr
Evaluate the fit for iterative bias reduction model

Description

The function evaluates the fit for iterative bias reduction model for iteration k. This function is not intended to be used directly.

Usage

fittedS1lr(n, U, tUy, eigenvaluesS1, ddlmini, k, rank)

Arguments

- n: The number of observations.
- U: The the matrix of eigen vectors of the symmetric smoothing matrix S.
- tUy: The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.
- eigenvaluesS1: Vector of the eigenvalues of the symmetric smoothing matrix S.
- ddlmini: The number of eigen values of S equal to 1.
- k: A numeric vector which gives the number of iterations
- rank: The rank of lowrank splines.

Details

see the reference for detailed explanation of computation of iterative bias reduction smoother

Value

Returns a vector containing the fit

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

See Also

ibr

forward

Iterative bias reduction smoothing

Description

Performs a forward variable selection for iterative bias reduction using kernel, thin plate splines or low rank splines. Missing values are not allowed.

Usage

```
forward(formula, data, subset, criterion = "gcv", df = 1.5, Kmin = 1, Kmax = 1e+06,
        smoother = "k", kernel = "g", rank = NULL, control.par = list(),
        cv.options = list(), varcrit = criterion)
```

Arguments

- **formula**: An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: An optional data frame, list or environment (or object coercible by `as.data.frame`) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which forward is called.
- **subset**: An optional vector specifying a subset of observations to be used in the fitting process.
- **criterion**: Character string. If the number of iterations (iter) is missing or NULL the number of iterations is chosen using criterion. The criteria available are GCV (default, "gcv"), AIC ("aic"), corrected AIC ("aicc"), BIC ("bic"), gMDL ("gmdl"), map ("map") or rmse ("rmse"). The last two are designed for cross-validation.
- **df**
 - A numeric vector of either length 1 or length equal to the number of columns of x. If smoother="k", it indicates the desired degree of freedom (trace) of the smoothing matrix for each variable or for the initial smoother (see `contr.sp$dftotal`); df is repeated when the length of vector df is 1. If smoother="tps", the minimum df of thin plate splines is multiplied by df. This argument is useless if bandwidth is supplied (non null).
- **Kmin**
 - The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- **Kmax**
 - The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- **smoother**
 - Character string which allows to choose between thin plate splines "tps" or kernel ("k").
kernel Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q"). The default (gaussian kernel) is strongly advised.

rank Numeric value that control the rank of low rank splines (denoted as k in mgcv package; see also choose.k for further details or gam for another smoothing approach with reduced rank smoother.

control.par a named list that control optional parameters. The components are bandwidth (default to NULL), iter (default to NULL), really.big (default to FALSE), dfstobwitmax (default to 1000), exhaustive (default to FALSE), m (default to NULL), dfstotal (default to FALSE), accuracy (default to 0.01), ddlmaxi (default to 2n/3) and fraction (default to 1e+04, 1e+05, 1e+05, 1e+05, 1e+05, 1e+05).

bandwidth: a vector of either length 1 or length equal to the number of columns of x. If smoother="k", it indicates the bandwidth used for each variable, bandwidth is repeated when the length of vector bandwidth is 1. If smoother="tps", it indicates the amount of penalty (coefficient lambda). The default (missing) indicates, for smoother="k", that bandwidth for each variable is chosen such that each univariate kernel smoother (for each explanatory variable) has df degrees of freedom and for smoother="tps" that lambda is chosen such that the df of the smoothing matrix is df times the minimum df.

iter: the number of iterations. If null or missing, an optimal number of iterations is chosen from the search grid (integer from Kmin to Kmax) to minimize the criterion.

really.big: a boolean: if TRUE it overrides the limitation at 500 observations. Expect long computation times if TRUE.

dfstobwitmax: When bandwidth is chosen by specifying the degree of freedom (see df) a search is done by uniroot. This argument specifies the maximum number of iterations transmitted to uniroot function.

exhaustive: boolean, if TRUE an exhaustive search of optimal number of iteration on the grid Kmin:Kmax is performed. If FALSE the minimum of criterion is searched using optimize between Kmin and Kmax.

m: the order of thin plate splines. This integer m must verifies 2m/d>1, where d is the number of explanatory variables. The missing default to choose the order m as the first integer such that 2m/d>1, where d is the number of explanatory variables (same for NULL).

dfstotal: a boolean wich indicates when FALSE that the argument df is the objective df for each univariate kernel (the default) calculated for each explanatory variable or for the overall (product) kernel, that is the base smoother (when TRUE).

accuracy: tolerance when searching bandwidths which lead to a chosen overall intial df.

dfmaxi: the maximum degree of freedom allowed for iterated biased reduction smoother.

fraction: the subdivision of interval Kmin,Kmax if non exhaustive search is performed (see also iterchoiceA or iterchoiceS1).

cv.options A named list which controls the way to do cross validation with component bwchange, ntest, ntrain, Kfold, type, seed, method and nperm犹. bwchange
forward is a boolean (default to FALSE) which indicates if bandwidth have to be recomputed each time. ntest is the number of observations in test set and ntrain is the number of observations in training set. Actually, only one of these is needed the other can be NULL or missing. Kfold a boolean or an integer. If Kfold is TRUE then the number of fold is deduced from ntest (or ntrain). type is a character string in random, timeseries, consecutive, interleaved and give the type of segments. seed controls the seed of random generator. method is either "inmemory" or "outmemory"; "inmemory" induces some calculations outside the loop saving computational time but leading to an increase of the required memory. npermut is the number of random draws. If cv.options is list(), then component ntest is set to floor(nrow(x)/10). type is random, npermut is 20 and method is "inmemory", and the other components are NULL.

varcrit Character string. Criterion used for variable selection. The criteria available are GCV, AIC("aic"), corrected AIC("aicc"), BIC("bic") and gMDL("gmdl").

Value

Returns an object of class forwardibr which is a matrix with p columns. In the first row, each entry j contains the value of the chosen criterion for the univariate smoother using the jth explanatory variable. The variable which realize the minimum of the first row is included in the model. All the column of this variable will be Inf except the first row. In the second row, each entry j contains the bivariate smoother using the jth explanatory variable and the variable already included. The variable which realize the minimum of the second row is included in the model. All the column of this variable will be Inf except the two first row. This forward selection process continue until the chosen criterion increases.

Author(s)

References

See Also

ibr, plot.forwardibr

Examples

```r
## Not run:
data(ozone, package = "ibr")
res.ibr <- forward(ozone[, -1], ozone[, 1], df=1.2)
```
Iterative bias reduction smoothing

Description

Performs iterative bias reduction using kernel, thin plate splines Duchon splines or low rank splines. Missing values are not allowed.

Usage

```r
ibr(formula, data, subset, criterion="gcv", df=1.5, Kmin=1, Kmax=1e+06, smoother="k", kernel="g", rank=NULL, control.par=list(), cv.options=list())
```

Arguments

- `formula`: An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data`: An optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `ibr` is called.
- `subset`: An optional vector specifying a subset of observations to be used in the fitting process.
- `criterion`: A vector of string. If the number of iterations (`iter`) is missing or NULL the number of iterations is chosen using the either one criterion (the first coordinate of criterion) or several (see component criterion of argument list `control.par`). The criteria available are GCV (default, "gcv"), AIC ("aic"), corrected AIC ("aicc"), BIC ("bic"), gMDL ("gmdl"), map ("map") or rmse ("rmse"). The last two are designed for cross-validation.
- `df`: A numeric vector of either length 1 or length equal to the number of columns of `x`. If `smoother="k"`, it indicates the desired effective degree of freedom (trace) of the smoothing matrix for each variable or for the initial smoother (see `contr.sp$dftotal`); `df` is repeated when the length of vector `df` is 1. If `smoother="tps"` or `smoother="ds"`, the minimum `df` of splines is multiplied by `df`. This argument is useless if bandwidth is supplied (non null).
- `Kmin`: The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- `Kmax`: The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- `smoother`: Character string which allows to choose between thin plate splines "tps". Duchon splines "tps" (see Duchon, 1977) or kernel ("k").
kernel
Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q"). The default (gaussian kernel) is strongly advised.

rank
Numeric value that control the rank of low rank splines (denoted as k in mgcv package; see also choose.k for further details or gam for another smoothing approach with reduced rank smoother.

control.par
A named list that control optional parameters. The components are bandwidth (default to NULL), iter (default to NULL), really.big (default to FALSE), dftobwitmax (default to 1000), exhaustive (default to FALSE), m (default to NULL), s (default to NULL), dftotal (default to FALSE), accuracy (default to 0.01), ddlmaxi (default to 2n/3), fraction (default to c(100, 200, 500, 1000, 5000, 10^4, 5e+04, .

control.par

bandwidth: a vector of either length 1 or length equal to the number of columns of x. If smoother="k", it indicates the bandwidth used for each variable, bandwidth is repeated when the length of vector bandwidth is 1. If smoother="tps", it indicates the amount of penalty (coefficient lambda). The default (missing) indicates, for smoother="k", that bandwidth for each variable is chosen such that each univariate kernel smoother (for each explanatory variable) has df effective degrees of freedom and for smoother="tps" or smoother="ds" that lambda is chosen such that the df of the smoothing matrix is df times the minimum df.

iter: the number of iterations. If null or missing, an optimal number of iterations is chosen from the search grid (integer from kmin to kmax) to minimize the criterion.

really.big: a boolean: if TRUE it overrides the limitation at 500 observations. Expect long computation times if TRUE.

dftobwitmax: When bandwidth is chosen by specifying the effective degree of freedom (see df) a search is done by uniroot. This argument specifies the maximum number of iterations transmitted to uniroot function.

exhaustive: boolean, if TRUE an exhaustive search of optimal number of iteration on the grid kmin\rightarrow kmax is performed. All criteria for all iterations in the same class (class one: GCV, AIC, corrected AIC, BIC, gMDL; class two: MAP, RMSE) are returned in argument allcrit. If FALSE the minimum of criterion is searched using optimize between kmin and kmax.

m: The order of derivatives for the penalty (for thin plate splines it is the order). This integer m must verify 2m+2sd/d>1, where d is the number of explanatory variables. The default (for smoother="tps") is to choose the order m as the first integer such that 2m/d>1, where d is the number of explanatory variables. The default (for smoother="ds") is to choose m=2 (pseudo cubic splines).

s: the power of weighting function. For thin plate splines s is equal to 0. This real must be strictly smaller than d/2 (where d is the number of explanatory variables) and must verify 2m+2sd/d. To get pseudo-cubic splines (the default), choose m=2 and s=(d-1)/2 (See Duchon, 1977). the order of thin plate splines. This integer m must verifies 2m/d>1, where d is the number of explanatory variables.

dftotal: a boolean wich indicates when FALSE that the argument df is the objective df for each univariate kernel (the default) calculated for each explana-
variable or for the overall (product) kernel, that is the base smoother (when TRUE).

accuracy: tolerance when searching bandwidths which lead to a chosen overall initial df.

dfmax: the maximum effective degree of freedom allowed for iterated biased reduction smoother.

fraction: the subdivision of interval Kmin,Kmax if non exhaustive search is performed (see also iterchoiceA or iterchoiceS1).

scale: boolean. If TRUE x is scaled (using scale); default to FALSE.

criterion Character string. Possible choices are strict, aggregation or recalc. strict allows to select the number of iterations according to the first coordinate of argument criterion. aggregation allows to select the number of iterations by applying the function control.par$aggregfun to the number of iterations selected by all the criteria chosen in argument criterion. recalc allows to select the number of iterations by first calculating the optimal number of the second coordinate of argument criterion, then applying the function control.par$aggregfun (to add some number to it) resulting in a new Kmax and then doing the optimal selection between Kmin and this new Kmax using the first coordinate of argument criterion. : default to strict.

aggregfun function to be applied when control.par$criterion is either recalc or aggregation.

cv.options A named list which controls the way to do cross validation with component bwchange, ntest, ntrain, Kfold, type, seed, method and nperm. bwchange is a boolean (default to FALSE) which indicates if bandwidth have to be recomputed each time. ntest is the number of observations in test set and ntrain is the number of observations in training set. Actually, only one of these is needed the other can be NULL or missing. Kfold a boolean or an integer. If Kfold is TRUE then the number of fold is deduced from ntest (or ntrain). type is a character string in random, timeseries, consecutive, interleaved and give the type of segments. seed controls the seed of random generator. method is either "inmemory" or "outmemory": "inmemory" induces some calculations outside the loop saving computational time but leading to an increase of the required memory. nperm is the number of random draws. If cv.options is list(), then component ntest is set to floor(nrow(x)/10), type is random, nperm is 20 and method is "inmemory", and the other components are NULL.

Value

Returns an object of class ibr which is a list including:

beta Vector of coefficients.
residuals Vector of residuals.
fitted Vector of fitted values.
iter The number of iterations used.
initialdf The initial effective degree of freedom of the pilot (or base) smoother.
finaldf The effective degree of freedom of the iterated bias reduction smoother at the iter iterations.
bandwidth Vector of bandwidth for each explanatory variable

call The matched call

call

parcall A list containing several components: p contains the number of explanatory variables and m the order of the splines (if relevant), s the power of weights, scaled boolean which is TRUE when explanatory variables are scaled, mean mean of explanatory variables if scaled=TRUE, sd standard deviation of explanatory variables if scaled=TRUE, critmethod that indicates the method chosen for criteria strict, rank the rank of low rank splines if relevant, criterion the chosen criterion, smoother the chosen smoother, kernel the chosen kernel, smoothobject the smoothobject returned by smoothCon, exhaustive a boolean which indicates if an exhaustive search was chosen

criteria Value of the chosen criterion at the given iteration, NA is returned when aggregation of criteria is chosen (see component criterion of list control.par). If the number of iterations iter is given by the user, NULL is returned

alliter Numeric vector giving all the optimal number of iterations selected by the chosen criteria.

allcriteria either a list containing all the criteria evaluated on the grid Kmin:Kmax (along with the effective degree of freedom of the smoother and the sigma squared on this grid) if an exhaustive search is chosen (see the value of function iterchoiceAe or iterchoiceS1e) or all the values of criteria at the given optimal iteration if a non exhaustive search is chosen (see also exhaustive component of list control.par).

call The matched call.

terms The 'terms' object used.

Author(s)

References

See Also

predict.ibr, summary.ibr, gam
Examples

```r
f <- function(x, y) { .75*exp(-((9*x-2)^2 + (9*y-2)^2)/4) + .75*exp(-((9*x+1)^2/49 + (9*y+1)^2/10)) + .50*exp(-((9*x-7)^2 + (9*y-3)^2)/4) - .20*exp(-((9*x-4)^2 + (9*y-7)^2)) }

# define a (fine) x-y grid and calculate the function values on the grid
ngrid <- 50; xf <- seq(0,1, length=ngrid+2)[-c(1,ngrid+2)]
yf <- xf; zf <- outer(xf, yf, f)
grid <- cbind.data.frame(x=rep(xf, ngrid), y=rep(xf, rep(ngrid, ngrid)), z=as.vector(zf))
persp(xf, yf, zf, theta=30, phi=20, expand=0.45, main="True Function")

# generate a data set with function f and noise to signal ratio 5
noise <- .2; N <- 100
xr <- seq(0.05,0.95,by=0.1); yr <- xr; zm <- outer(xr,yr,f); set.seed(25)
std <- sqrt(noise*var(as.vector(zm))); noise <- rnorm(length(zm),0,std)
Z <- zm + matrix(noise,sqrt(N),sqrt(N))
# transpose the data to a column format
xc <- rep(xr, sqrt(N)); yc <- rep(yr, rep(sqrt(N),sqrt(N)))
data <- cbind.data.frame(x=xc, y=yc, z=as.vector(Z))
# fit by thin plate splines (of order 2) ibr
res.ibr <- ibr(z~x+y, data=data, df=1.1, smoother="tps")
fit <- matrix(predict(res.ibr, grid), ngrid, ngrid)
persp(xf, yf, fit, theta=30, phi=20, expand=0.45, main="Fit", zlab="fit")

## Not run:
data(ozone, package = "ibr")
res.ibr <- ibr(Ozone~, data=ozone, df=1.1)
summary(res.ibr)
predict(res.ibr)
## End(Not run)
```

ibr.fit

Iterative bias reduction smoothing

Description

Performs iterative bias reduction using kernel, thin plate splines, Duchon splines or low rank splines. Missing values are not allowed. This function is not intended to be used directly.

Usage

```r
ibr.fit(x, y, criterion="gcv", df=1.5, Kmin=1, Kmax=1e+06, smoother="k", kernel="g", rank=NULL, control.par=list(), cv.options=list())
```

Arguments

- **x**
 A numeric matrix of explanatory variables, with \(n\) rows and \(p\) columns.

- **y**
 A numeric vector of variable to be explained of length \(n\).
criterion

A vector of string. If the number of iterations (iter) is missing or NULL the number of iterations is chosen using the either one criterion (the first coor-dinate of criterion) or several (see component criterion of argument list control.par). The criteria available are GCV (default, "gev"), AIC ("aic"), corrected AIC ("aicc"), BIC ("bic"), gMDL ("gmdl"), map ("map") or rmse ("rmse"). The last two are designed for cross-validation.

df

A numeric vector of either length 1 or length equal to the number of columns of x. If smoother="k", it indicates the desired effective degree of freedom (trace) of the smoothing matrix for each variable or for the initial smoother (see contr.sp$dftotal); df is repeated when the length of vector df is 1. If smoother="tps" or smoother="ds", the minimum df of splines is multiplied by df. This argument is useless if bandwidth is supplied (non null).

Kmin

The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

Kmax

The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

smoother

Character string which allows to choose between thin plate splines "tps", Duchon splines "tps" (see Duchon, 1977) or kernel ("k").

kernel

Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q"). The default (gaussian kernel) is strongly advised.

rank

Numeric value that control the rank of low rank splines (denoted as k in mgcv package ; see also choose.k for further details or gam for another smoothing approach with reduced rank smoother.

control.par

A named list that control optional parameters. The components are bandwidth (default to NULL), iter (default to NULL), really.big (default to FALSE), dftobwitmax (default to 1000), exhaustive (default to FALSE), m (default to NULL), s (default to NULL), dftotal (default to FALSE), accuracy (default to 0.01), ddlmaxi (default to 2n/3), fraction (default to c(100, 200, 500, 1000, 5000, 10^4, 5e+04, scale (default to FALSE)), criterion (default to "strict") and aggregfun (default to 10^(floor(log10(x[2]))+2)).

bandwidth: a vector of either length 1 or length equal to the number of columns of x. If smoother="k", it indicates the bandwidth used for each variable, bandwidth is repeated when the length of vector bandwidth is 1. If smoother="tps", it indicates the amount of penalty (coefficient lambda). The default (missing) indicates, for smoother="k", that bandwidth for each variable is chosen such that each univariate kernel smoother (for each explanatory variable) has df effective degrees of freedom and for smoother="tps" or smoother="ds" that lambda is chosen such that the df of the smoothing matrix is df times the minimum df.

iter: the number of iterations. If null or missing, an optimal number of iterations is chosen from the search grid (integer from Kmin to Kmax) to minimize the criterion.

really.big: a boolean: if TRUE it overides the limitation at 500 observations. Expect long computation times if TRUE.

dftobwitmax: When bandwidth is chosen by specifying the effective degree of freedom (see df) a search is done by uniroot. This argument specifies the maximum number of iterations transmitted to uniroot function.
exhaustive: boolean, if TRUE an exhaustive search of optimal number of iteration on the grid \(k_{\text{min}}:k_{\text{max}} \) is performed. All criteria for all iterations in the same class (class one: GCV, AIC, corrected AIC, BIC, gMDL; class two: MAP, RMSE) are returned in argument allcrit. If FALSE the minimum of criterion is searched using optimize between \(k_{\text{min}} \) and \(k_{\text{max}} \).

\(m \): The order of derivatives for the penalty (for thin plate splines it is the order). This integer \(m \) must verify \(2^m+2s/d>1 \), where \(d \) is the number of explanatory variables. The default (for smoother=“tps”) is to choose the order \(m \) as the first integer such that \(2^m+2s/d>1 \), where \(d \) is the number of explanatory variables. The default (for smoother=“ds”) is to choose \(m=2 \) (pseudo cubic splines).

\(s \): the power of weighting function. For thin plate splines \(s \) is equal to 0. This real must be strictly smaller than \(d/2 \) (where \(d \) is the number of explanatory variables) and must verify \(2^m+2s/d \). To get pseudo-cubic splines (the default), choose \(m=2 \) and \(s=(d-1)/2 \) (See Duchon, 1977). the order of thin plate splines. This integer \(m \) must verifies \(2^m+2s/d>1 \), where \(d \) is the number of explanatory variables.

dftotal: a boolean wich indicates when FALSE that the argument df is the objective df for each univariate kernel (the default) calculated for each explanatory variable or for the overall (product) kernel, that is the base smoother (when TRUE).

accuracy: tolerance when searching bandwidths which lead to a chosen overall intial df.

dfmaxi: the maximum effective degree of freedom allowed for iterated biased reduction smoother.

fraction: the subdivision of interval \(k_{\text{min}}:k_{\text{max}} \) if non exhaustive search is performed (see also \(\text{iterchoiceA} \) or \(\text{iterchoiceS1} \)).

scale: boolean. If TRUE \(x \) is scaled (using \(\text{scale} \)); default to FALSE.

criterion Character string. Possible choices are \(\text{strict} \), \(\text{aggregation} \) or \(\text{recalc} \). \(\text{strict} \) allows to select the number of iterations according to the first coordinate of argument criterion. \(\text{aggregation} \) allows to select the number of iterations by applying the function control.par$aggregfun to the number of iterations selected by all the criteria chosen in argument criterion. \(\text{recalc} \) allows to select the number of iterations by first calculating the optimal number of the second coordinate of argument criterion, then applying the function control.par$aggregfun (to add some number to it) resulting in a new \(k_{\text{max}} \) and then doing the optimal selection between \(k_{\text{min}} \) and this new \(k_{\text{max}} \) using the first coordinate of argument criterion.: default to \(\text{strict} \).

aggregfun function to be applied when control.par$criterion is either \(\text{recalc} \) or \(\text{aggregation} \).

cv.options A named list which controls the way to do cross validation with component bwchange, ntest, ntrain, Kfold, type, seed, method and npermute. bwchange is a boolean (default to FALSE) which indicates if bandwidth have to be recomputed each time. ntest is the number of observations in test set and ntrain is the number of observations in training set. Actually, only one of these is needed the other can be NULL or missing. Kfold a boolean or an integer. If Kfold is TRUE then the number of fold is deduced from ntest (or ntrain). type is a character string in random, timeseries, consecutive, interleaved and give
the type of segments. seed controls the seed of random generator. method is either "inmemory" or "outmemory"; "inmemory" induces some calculations outside the loop saving computational time but leading to an increase of the required memory. npermut is the number of random draws. If cv.options is list(), then component ntest is set to floor(nrow(x)/10), type is random, npermut is 20 and method is "inmemory", and the other components are NULL.

Value

Returns a list including:

- **beta**: Vector of coefficients.
- **residuals**: Vector of residuals.
- **fitted**: Vector of fitted values.
- **iter**: The number of iterations used.
- **initialdf**: The initial effective degree of freedom of the pilot (or base) smoother.
- **finaldf**: The effective degree of freedom of the iterated bias reduction smoother at the iter iterations.
- **bandwidth**: Vector of bandwidth for each explanatory variable
- **call**: The matched call
- **parcall**: A list containing several components: p contains the number of explanatory variables and m the order of the splines (if relevant), s the power of weights, scaled boolean which is TRUE when explanatory variables are scaled, mean mean of explanatory variables if scaled=TRUE, sd standard deviation of explanatory variables if scaled=TRUE, critmethod that indicates the method chosen for criteria strict, rank the rank of low rank splines if relevant, criterion the chosen criterion, smoother the chosen smoother, kernel the chosen kernel, smoothobject the smoothobject returned by smoothCon, exhaustive a boolean which indicates if an exhaustive search was chosen

- **criteria**: Value of the chosen criterion at the given iteration, NA is returned when aggregation of criteria is chosen (see component criterion of list control.par). If the number of iterations iter is given by the user, NULL is returned
- **alliter**: Numeric vector giving all the optimal number of iterations selected by the chosen criteria.
- **allcriteria**: either a list containing all the criteria evaluated on the grid kmin:kmax (along with the effective degree of freedom of the smoother and the sigma squared on this grid) if an exhaustive search is chosen (see the value of function iterchoiceAe or iterchoiceSle) or all the values of criteria at the given optimal iteration if a non exhaustive search is chosen (see also exhaustive component of list control.par).

Author(s)

References

See Also
* ibr, predict.ibr, summary.ibr, gam

iterchoiceA

Selection of the number of iterations for iterative bias reduction smoothers

Description
The function *iterchoiceA* searches the interval from *mini* to *maxi* for a minimum of the function which calculates the chosen criterion (*critAgcv*, *critAaic*, *critAaicc* or *critAgmdl*) with respect to its first argument (a given iteration *k*) using `optimize`. This function is not intended to be used directly.

Usage
`
iterchoiceA(n, mini, maxi, eigenvaluesA, tPADmdemiy, DdemiPA, ddlmini, ddl maxi, y, criterion, fraction)
`

Arguments
- **n**: The number of observations.
- **mini**: The lower end point of the interval to be searched.
- **maxi**: The upper end point of the interval to be searched.
- **eigenvaluesA**: Vector of the eigenvalues of the symmetric matrix *A*.
- **tPADmdemiy**: The transpose of the matrix of eigen vectors of the symmetric matrix *A* times the inverse of the square root of the diagonal matrix *D*.
- **DdemiPA**: The square root of the diagonal matrix *D* times the eigen vectors of the symmetric matrix *A*.
- **ddlmini**: The number of eigenvalues (numerically) equals to 1.
- **ddl maxi**: The maximum df. No criterion is calculated and Inf is returned.
- **y**: The vector of observations of dependant variable.
- **criterion**: The criteria available are GCV (default, "gcv"), AIC ("aic"), corrected AIC ("aicc"), BIC ("bic") or gMDL ("gmdl").
- **fraction**: The subdivision of the interval [mini, maxi].
Details

See the reference for detailed explanation of A and D. The interval $[\text{mini}, \text{maxi}]$ is splitted into subintervals using fraction. In each subinterval the function fcriterion is minimized using optimize (with respect to its first argument) and the minimum (and its argument) of the result of these optimizations is returned.

Value

A list with components iter and objective which give the (rounded) optimum number of iterations (between K_{min} and K_{max}) and the value of the function at that real point (not rounded).

Author(s)

References

See Also

$\text{ibr}, \text{iterchoiceA}$

iterchoiceAcv
Selection of the number of iterations for iterative bias reduction smoothers

Description

The function iterchoiceAcv searches the interval from mini to maxi for a minimum of the function criterion with respect to its first argument using optimize. This function is not intended to be used directly.

Usage

$\text{iterchoiceAcv}(X, y, bx, df, kernelx, ddlmini, ntest, ntrain, Kfold, type, npermut, seed, Kmin, Kmax, criterion, fraction)$
Arguments

- **X**: A numeric matrix of explanatory variables, with \(n \) rows and \(p \) columns.
- **y**: A numeric vector of variable to be explained of length \(n \).
- **bx**: The vector of different bandwidths, length \(p \).
- **df**: A numeric vector of either length 1 or length equal to the number of columns of \(x \). If smoother="k", it indicates the desired effective degree of freedom (trace) of the smoothing matrix for each variable; \(df \) is repeated when the length of vector \(df \) is 1. This argument is useless if bandwidth is supplied (non null).
- **kernelx**: Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q"). The default (gaussian kernel) is strongly advised.
- **ddlmni**: The number of eigenvalues (numerically) equals to 1.
- **npermut**: The number of random draw (with replacement), used for type="random".
- **seed**: Controls the seed of random generator (via `set.seed`).
- **Kmin**: The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- **Kmax**: The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- **criterion**: The criteria available are map ("map") or rmse ("rmse").
- **fraction**: The subdivision of the interval \([Kmin,Kmax]\).

Value

Returns the optimum number of iterations (between Kmin and Kmax).

Author(s)

References

See Also
ibr

iterchoiceAcve Selection of the number of iterations for iterative bias reduction smoothers

Description
Evaluates at each iteration proposed in the grid the cross-validated root mean squared error (RMSE) and mean of the relative absolute error (MAP). The minimum of these criteria gives an estimate of the optimal number of iterations. This function is not intended to be used directly.

Usage
iterchoiceAcve(X, y, bx, df, kernelx, ddlmini, ntest, ntrain, Kfold, type, npermut, seed, Kmin, Kmax)

Arguments

X A numeric matrix of explanatory variables, with \(n \) rows and \(p \) columns.
y A numeric vector of variable to be explained of length \(n \).
br The vector of different bandwidths, length \(p \).
df A numeric vector of either length 1 or length equal to the number of columns of \(x \). If \text{smoother} = "k", it indicates the desired effective degree of freedom (trace) of the smoothing matrix for each variable; \(df \) is repeated when the length of vector \(df \) is 1. This argument is useless if bandwidth is supplied (non null).
kernell Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q"). The default (gaussian kernel) is strongly advised.
ddlmin The number of eigenvalues (numerically) equals to 1.
test The number of observations in test set.
train The number of observations in training set.
Kfold Either the number of folds or a boolean or NULL.
type A character string in \text{random}, \text{timeseries}, \text{consecutive}, \text{interleaved} and give the type of segments.
npermut The number of random draw (with replacement), used for \text{type} = "random".
seed Controls the seed of random generator (via set.seed).
Kmin The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
Kmax The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
Value

Returns the values of RMSE and MAP for each value of the grid \(k \). \(\text{Inf} \) are returned if the iteration leads to a smoother with a df bigger than \(\text{ddlmaxi} \).

Author(s)

References

See Also

ibr

iterchoiceAe

Selection of the number of iterations for iterative bias reduction smoothers

Description

Evaluates at each iteration proposed in the grid the value of different criteria: GCV, AIC, corrected AIC, BIC and gMDL (along with the ddl and sigma squared). The minimum of these criteria gives an estimate of the optimal number of iterations. This function is not intended to be used directly.

Usage

iterchoiceAe(Y, K, eigenvaluesA, tPADmdemiY, DdemiPA, ddlmini, ddlmaxi)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>The response variable.</td>
</tr>
<tr>
<td>(K)</td>
<td>A numeric vector which give the search grid for iterations.</td>
</tr>
<tr>
<td>eigenvaluesA</td>
<td>Vector of the eigenvalues of the symmetric matrix (A).</td>
</tr>
<tr>
<td>tPADmdemiY</td>
<td>The transpose of the matrix of eigen vectors of the symmetric matrix (A) times the inverse of the square root of the diagonal matrix (D).</td>
</tr>
<tr>
<td>DdemiPA</td>
<td>The square root of the diagonal matrix (D) times the eigen vectors of the symmetric matrix (A).</td>
</tr>
</tbody>
</table>
iterchoicesQ

The number of eigenvalues (numerically) which are equal to 1.

ddlmaxi

The maximum df. No criteria are calculated beyond the number of iterations that leads to df bigger than this bound.

Details

See the reference for detailed explanation of A and D

Value

Returns the values of GCV, AIC, corrected AIC, BIC, gMDL, df and sigma squared for each value of the grid K. ∞ are returned if the iteration leads to a smoother with a df bigger than $ddlmaxi$.

Author(s)

References

See Also

ibr, iterchoiceA

iterchoicesS1

Number of iterations selection for iterative bias reduction model

Description

The function iterchoicesS1 searches the interval from mini to maxi for a minimum of the function which calculates the chosen criterion (critS1gcv, critS1aic, critS1bic, critS1aicc or critS1gmdl) with respect to its first argument (a given iteration k) using optimize. This function is not intended to be used directly.

Usage

iterchoicesS1(n, mini, maxi, tUy, eigenvaluesS1, ddlmini, ddlmaxi, y, criterion, fraction)
Arguments

- **n**: The number of observations.
- **mini**: The lower end point of the interval to be searched.
- **maxi**: The upper end point of the interval to be searched.
- **eigenvaluesS**: Vector of the eigenvalues of the symmetric smoothing matrix \(S \).
- **tUy**: The transpose of the matrix of eigen vectors of the symmetric smoothing matrix \(S \) times the vector of observation \(y \).
- **ddlmini**: The number of eigen values of \(S \) equal to 1.
- **ddlmaxi**: The maximum df. No criterion is calculated and \(\text{Inf} \) is returned.
- **y**: The vector of observations of dependant variable.
- **criterion**: The criteria available are GCV (default, "gcv"), AIC ("aic"), corrected AIC ("aicc"), BIC ("bic") or gMDL ("gmdl").
- **fraction**: The subdivision of the interval \([\text{mini}, \text{maxi}]\).

Details

The interval \([\text{mini}, \text{maxi}]\) is splitted into subintervals using \(\text{fraction} \). In each subinterval the function \(\text{fcriterion} \) is minimized using \texttt{optimize} (with respect to its first argument) and the minimum (and its argument) of the result of these optimizations is returned.

Value

A list with components \texttt{iter} and \texttt{objective} which give the (rounded) optimum number of iterations (between \(k_{\min} \) and \(k_{\max} \)) and the value of the function at that real point (not rounded).

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

See Also

\texttt{ibr}, \texttt{iterchoices}
iterchoicesQcv

Selection of the number of iterations for iterative bias reduction smoothers with base thin-plate splines or duchon splines smoother

Description

The function iterchoicesQcv searches the interval from mini to maxi for a minimum of the function criterion with respect to its first argument using optimize. This function is not intended to be used directly.

Usage

iterchoicesQcv(X, y, lambda, df, ddlmini, ntest, ntrain, Kfold, type, npermut, seed, Kmin, Kmax, criterion, m, s, fraction)

Arguments

X A numeric matrix of explanatory variables, with n rows and p columns.

y A numeric vector of variable to be explained of length n.

lambda A numeric positive coefficient that governs the amount of penalty (coefficient lambda).

df A numeric vector of length 1 which is multiplied by the minimum df of thin plate splines ; This argument is useless if lambda is supplied (non null).

ddlmini The number of eigenvalues equals to 1.

ntest The number of observations in test set.

ntrain The number of observations in training set.

Kfold Either the number of folds or a boolean or NULL.

type A character string in random, timeseries, consecutive, interleaved and give the type of segments.

npermut The number of random draw (with replacement), used for type="random".

seed Controls the seed of random generator (via set.seed).

Kmin The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

Kmax The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

criterion The criteria available are map ("map") or rmse ("rmse").

m The order of derivatives for the penalty (for thin plate splines it is the order). This integer m must verify $2m+2sl/d>1$, where d is the number of explanatory variables.

s The power of weighting function. For thin plate splines s is equal to 0. This real must be strictly smaller than $d/2$ (where d is the number of explanatory variables) and must verify $2m+2sl/d$. To get pseudo-cubic splines, choose $m=2$ and $s=(d-1)/2$ (See Duchon, 1977).

fraction The subdivision of the interval [Kmin,Kmax].
Value

Returns the optimum number of iterations (between k_{min} and k_{max}).

Author(s)

References

See Also

`ibr`

iterchoicesS1cve

Selection of the number of iterations for iterative bias reduction smoothers with base thin-plate splines smoother or duchon splines smoother

Description

Evaluates at each iteration proposed in the grid the cross-validated root mean squared error (RMSE) and mean of the relative absolute error (MAP). The minimum of these criteria gives an estimate of the optimal number of iterations. This function is not intended to be used directly.

Usage

`iterchoicesS1cve(X, y, lambda, df, ddlmini, ntest, ntrain, Kfold, type, nperm, seed, Kmin, Kmax, m, s)`
Arguments

\(X\) A numeric matrix of explanatory variables, with \(n\) rows and \(p\) columns.

\(y\) A numeric vector of variable to be explained of length \(n\).

\(\lambda\) A numeric positive coefficient that governs the amount of penalty (coefficient \(lambda\)).

\(\text{df}\) A numeric vector of length 1 which is multiplied by the minimum \(\text{df}\) of thin plate splines ; This argument is useless if \(\lambda\) is supplied (non null).

\(\text{ddlmini}\) The number of eigenvalues equals to 1.

\(\text{ntest}\) The number of observations in test set.

\(\text{ntrain}\) The number of observations in training set.

\(\text{Kfold}\) Either the number of folds or a boolean or NULL.

\(\text{type}\) A character string in \text{random}, \text{timeseries}, \text{consecutive}, \text{interleaved} and give the type of segments.

\(\text{npermut}\) The number of random draw (with replacement), used for \text{type}="\text{random}".

\(\text{seed}\) Controls the seed of random generator (via \text{set.seed}).

\(\text{Kmin}\) The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

\(\text{Kmax}\) The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

\(m\) The order of derivatives for the penalty (for thin plate splines it is the order). This integer \(m\) must verify \(2m+2s/d>1\), where \(d\) is the number of explanatory variables.

\(s\) The power of weighting function. For thin plate splines \(s\) is equal to 0. This real must be strictly smaller than \(d/2\) (where \(d\) is the number of explanatory variables) and must verify \(2m+2sd>1\). To get pseudo-cubic splines, choose \(m=2\) and \(s=(d-1)/2\) (See Duchon).

Value

Returns the values of RMSE and MAP for each value of the grid \(K\). \(\text{Inf}\) are returned if the iteration leads to a smoother with a \(\text{df}\) bigger than \(\text{ddlmaxi}\).

Author(s)

References

See Also

`ibr`

iterchoices

Number of iterations selection for iterative bias reduction model

Description

Evaluate at each iteration proposed in the grid the value of different criteria: GCV, AIC, corrected AIC, BIC and gMDL (along with the ddl and sigma squared). The minimum of these criteria gives an estimate of the optimal number of iterations. This function is not intended to be used directly.

Usage

```r
iterchoices(y, K, tly, eigenvaluesS, ddlmini, ddlmaxi)
```

Arguments

- `y` The response variable
- `K` A numeric vector which give the search grid for iterations
- `eigenvaluesS` Vector of the eigenvalues of the symmetric smoothing matrix S.
- `tly` The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.
- `ddlmini` The number of eigen values of S equal to 1.
- `ddlmaxi` The maximum df. No criteria are calculated beyond the number of iterations that leads to df bigger than this bound.

Value

Returns the values of GCV, AIC, corrected AIC, BIC, gMDL, df and sigma squared for each value of the grid K. Inf are returned if the iteration leads to a smoother with a df bigger than `ddlmaxi`.

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober
References

See Also

`ibr, iterchoicesQ`

--

iterchoicesQlrcv

Selection of the number of iterations for iterative bias reduction smoothers with base lowrank thin-plate splines or duchon splines smoother

--

Description

The function `iterchoicesQlrcv` searches the interval from mini to maxi for a minimum of the function criterion with respect to its first argument using `optimize`. This function is not intended to be used directly.

Usage

`iterchoicesQlrcv(X, y, lambda, rank, bs, listvarx, df, ddlmini, ntest, ntrain, Kfold, type, npermut, seed, Kmin, Kmax, criterion, m, s, fraction)`

Arguments

- **X**: A numeric matrix of explanatory variables, with `n` rows and `p` columns.
- **y**: A numeric vector of variable to be explained of length `n`.
- **lambda**: A numeric positive coefficient that governs the amount of penalty (coefficient lambda).
- **df**: A numeric vector of length 1 which is multiplied by the minimum df of thin plate splines; This argument is useless if lambda is supplied (non null).
- **rank**: The rank of lowrank splines.
- **bs**: The type rank of lowrank splines: `tps` or `ds`.
- **listvarx**: The vector of the names of explanatory variables.
- **ddlmini**: The number of eigenvalues equals to 1.
- **ntest**: The number of observations in test set.
- **ntrain**: The number of observations in training set.
Kfold

either the number of folds or a boolean or NULL.

Kmax

The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.

criterion

The criteria available are map ("map") or rmse ("rmse").

m

The order of derivatives for the penalty (for thin plate splines it is the order). This integer \(m \) must verify \(2m+2s/d>1 \), where \(d \) is the number of explanatory variables.

s

The power of weighting function. For thin plate splines \(s \) is equal to 0. This real must be strictly smaller than \(d/2 \) (where \(d \) is the number of explanatory variables) and must verify \(2m+2s/d \). To get pseudo-cubic splines, choose \(m=2 \) and \(s=(d-1)/2 \) (See Duchon, 1977).

fraction

The subdivision of the interval \([Kmin,Kmax]\).

Value

Returns the optimum number of iterations (between \(Kmin \) and \(Kmax \)).

Author(s)

References

See Also

ibr
iterchoiceS1lrcve

Selection of the number of iterations for iterative bias reduction smoothers with base lowrank thin-plate splines smoother or duchon splines smoother

Description

Evaluates at each iteration proposed in the grid the cross-validated root mean squared error (RMSE) and mean of the relative absolute error (MAP). The minimum of these criteria gives an estimate of the optimal number of iterations. This function is not intended to be used directly.

Usage

iterchoiceS1lrcve(X, y, lambda, rank, bs, listvarx, df, ddlmini, ntest, ntrain, Kfold, type, npermut, seed, Kmin, Kmax, m, s)

Arguments

- `x`: A numeric matrix of explanatory variables, with \(n \) rows and \(p \) columns.
- `y`: A numeric vector of variable to be explained of length \(n \).
- `lambda`: A numeric positive coefficient that governs the amount of penalty (coefficient lambda).
- `rank`: The rank of lowrank splines.
- `bs`: The type rank of lowrank splines: `tps` or `ds`.
- `listvarx`: The vector of the names of explanatory variables.
- `df`: A numeric vector of length 1 which is multiplied by the minimum df of thin plate splines; This argument is useless if lambda is supplied (non null).
- `ddlmini`: The number of eigenvalues equals to 1.
- `ntest`: The number of observations in test set.
- `ntrain`: The number of observations in training set.
- `Kfold`: Either the number of folds or a boolean or NULL.
- `type`: A character string in `random`, `timeseries`, `consecutive`, `interleaved` and give the type of segments.
- `npermut`: The number of random draw (with replacement), used for type="random".
- `seed`: Controls the seed of random generator (via `set.seed`).
- `Kmin`: The minimum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- `Kmax`: The maximum number of bias correction iterations of the search grid considered by the model selection procedure for selecting the optimal number of iterations.
- `m`: The order of derivatives for the penalty (for thin plate splines it is the order). This integer \(m \) must verify \(2m+2s/d>1 \), where \(d \) is the number of explanatory variables.
The power of weighting function. For thin plate splines s is equal to 0. This real must be strictly smaller than $d/2$ (where d is the number of explanatory variables) and must verify $2m+2sl/d$. To get pseudo-cubic splines, choose $m=2$ and $s=(d-1)/2$ (See Duchon).

Value

Returns the values of RMSE and MAP for each value of the grid K. Inf are returned if the iteration leads to a smoother with a df bigger than ddl_{maxi}.

Author(s)

References

See Also

ibr

Description

Evaluate the kernel function at x: Gaussian, Epanechnikov, Uniform, Quartic. This function is not intended to be used directly.

Usage

```r
gaussian(X)  # Gaussian kernel
epane(X)    # Epanechnikov kernel
uniform(X)  # Uniform kernel
quartic(X)  # Quartic kernel
```
Arguments

X The value where the function has to be evaluate, should be a numeric and can be a scalar, a vector or a matrix

Value

Returns a scalar, a vector or a matrix which coordinates are the values of the kernel at the given coordinate

Author(s)

See Also

ibr

kernelSx Evaluates the smoothing matrix at x*

Description

The function evaluates the matrix of design weights to predict the response at arbitrary locations x. This function is not intended to be used directly.

Usage

kernelSx(kernelx="g",X,Xetoile,bx)

Arguments

kernelx Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").
X Matrix of explanatory variables, size n, p.
Xetoile Matrix of new design points x* at which to predict the response variable, size n*, p.
bx The vector of different bandwidths, length p.

Value

Returns the matrix denoted in the paper by Sx, n*, n.

Author(s)

See Also

ibr
Choice of bandwidth according to a given effective degree of freedom

Description

Perform a search for the different bandwidths in the given grid. For each explanatory variable, the bandwidth is chosen such that the trace of the smoothing matrix according to that variable (effective degree of freedom) is equal to a given value. This function is not intended to be used directly.

Usage

`lambdachoice(X, ddlobjectif, m=2, s=0, itermax, smoother="tps")`

Arguments

- **X**
 A matrix with \(n \) rows (individuals) and \(p \) columns (numeric variables)

- **ddlobjectif**
 A numeric vector of length 1 which indicates the desired effective degree of freedom (trace) of the smoothing matrix for thin plate splines of order \(m \).

- **m**
 The order of derivatives for the penalty (for thin plate splines it is the order). This integer \(m \) must verify \(2m+2s/d \geq 1 \), where \(d \) is the number of explanatory variables.

- **s**
 The power of weighting function. For thin plate splines \(s \) is equal to 0. This real must be strictly smaller than \(d/2 \) (where \(d \) is the number of explanatory variables) and must verify \(2m+2s/d \). To get pseudo-cubic splines, choose \(m=2 \) and \(s=(d-1)/2 \) (See Duchon, 1977).

- **itermax**
 A scalar which controls the number of iterations for that search

- **smoother**
 Character string which allows to choose between thin plate splines "tps" or Duchon splines "tps" (see Duchon, 1977).

Value

Returns the coefficient lambda that control smoothness for the desired effective degree of freedom

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

See Also

`ibr`
Choice of bandwidth according to a given effective degree of freedom

Description

Perform a search for the different bandwidths in the given grid. For each explanatory variable, the bandwidth is chosen such that the trace of the smoothing matrix according to that variable (effective degree of freedom) is equal to a given value. This function is not intended to be used directly.

Usage

lambdachoicelr(x, ddobjectif, m=2, s=0, rank, itermax, bs, listvarx)

Arguments

x
 A matrix with \(n \) rows (individuals) and \(p \) columns (numeric variables)

ddobjectif
 A numeric vector of length 1 which indicates the desired effective degree of freedom (trace) of the smoothing matrix for thin plate splines of order \(m \).

m
 The order of derivatives for the penalty (for thin plate splines it is the order). This integer \(m \) must verify \(2m + 2s/d > 1 \), where \(d \) is the number of explanatory variables.

s
 The power of weighting function. For thin plate splines \(s \) is equal to 0. This real must be strictly smaller than \(d/2 \) (where \(d \) is the number of explanatory variables) and must verify \(2m + 2s/d \). To get pseudo-cubic splines, choose \(m=2 \) and \(s=(d-1)/2 \) (See Duchon, 1977).

itermax
 A scalar which controls the number of iterations for that search

rank
 The rank of lowrank splines.

bs
 The type rank of lowrank splines: tps or ds.

listvarx
 The vector of the names of explanatory variables

Value

Returns the coefficient lambda that control smoothness for the desired effective degree of freedom

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

lrsmoother

See Also
ibr

lrsmoother Evaluate the lowrank spline

Description
The function evaluates all the features needed for a lowrank spline smoothing. This function is not intended to be used directly.

Usage
lrsmoother(x, bs, listvarx, lambda, m, s, rank)

Arguments
x Matrix of explanatory variables, size n.p.
bs The type rank of lowrank splines: tps or ds.
listvarx The vector of the names of explanatory variables
lambda The smoothness coefficient lambda for thin plate splines of order m.
m The order of derivatives for the penalty (for thin plate splines it is the order). This integer m must verify $2m + 2s/d > 1$, where d is the number of explanatory variables.
s The power of weighting function. For thin plate splines s is equal to 0. This real must be strictly smaller than $d/2$ (where d is the number of explanatory variables) and must verify $2m + 2s/d$. To get pseudo-cubic splines, choose $m=2$ and $s=(d-1)/2$ (See Duchon, 1977).
rank The rank of lowrank splines.

Details
see the reference for detailed explanation of the matrix matrix $R^{-1}U$ (see reference) and smoothCon for the definition of smoothobject

Value
Returns a list containing the smoothing matrix eigenvectors and eigenvalues vectors and values, and one matrix denoted $Rm1U$ and one smoothobject smoothobject.

Author(s)
Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober
References

See Also

ibr

npregress
Local polynomials smoothing

Description

Predicted values from a local polynomials of degree less than 2.

Missing values are not allowed.

Usage

```r
npregress(x, y, criterion="rmse", bandwidth=NULL, kernel="g",  
control.par=list(), cv.options=list())
```

Arguments

- `x` A numeric vector of explanatory variable of length \(n \).
- `y` A numeric vector of variable to be explained of length \(n \).
- `criterion` Character string. If the bandwidth (`bandwidth`) is missing or `NULL` the number of iterations is chosen using `criterion`. The criterion available is (cross-validated) rmse ("rmse") and mean (relative) absolute error.
- `bandwidth` The kernel bandwidth smoothing parameter (a numeric vector of either length 1).
- `kernel` Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").
- `control.par` A named list that control optional parameters. The two components are `bandwidth` for compatibility with `ibr` arguments and `degree` which controls the degree of the local polynomial regression. If argument `bandwidth` is not null or missing, its value is used instead `control.par$bandwidth`. `degree` must be smaller than 2. For (gaussian binned) local polynomial see `loccpoly`
- `cv.options` A named list which controls the way to do cross validation with component `gridbw`, `ntest`, `ntrain`, `Kfold`, `type`, `seed`, `method` and `nperm`. `gridbw` is numeric vector which contains the search grid for optimal bandwidth (default to \(1/n*\lfloor1+1/n\rfloor^0:kmax\), with \(kmax=\lfloor\log(n*\text{diff(range(x))}/3)/\log(1+1/n)\)). `ntest` is the number of observations in test set and `ntrain` is the number of observations in training set. Actually, only one of these is needed the other can
be NULL or missing. Kfold a boolean or an integer. If Kfold is TRUE then the number of fold is deduced from ntest (or ntrain). type is a character string in random, timeseries, consecutive, interleaved and give the type of segments. seed controls the seed of random generator. nperm is the number of random draws. If cv.options is list(), then component ntest is set to 1, type is consecutive, Kfold is TRUE, and the other components are NULL, which leads to leave-one-out cross-validation.

Value

Returns an object of class npregress which is a list including:

- `bandwidth` The kernel bandwidth smoothing parameter.
- `residuals` Vector of residuals.
- `fitted` Vector of fitted values.
- `df` The effective degree of freedom of the smoother.
- `call` A list containing four components: x contains the initial explanatory variables, y contains the initial dependant variables, criterion contains the chosen criterion, kernel the kernel and degree the chosen degree
- `criteria` either a named list containing the bandwidth search grid and all the criteria (rmse and mae) evaluated on the grid gridbw. If the bandwidth bandwidth is given by the user NULL is returned

Note

See locpoly for fast binned implementation over an equally-spaced grid of local polynomial. See ibr for univariate and multivariate smoothing.

Author(s)

References

See Also

predict.npregress, summary.npregress, locpoly, ibr

Examples

```r
f <- function(x)(sin(5*pi*x))
n <- 100
x <- runif(n)
z <- f(x)
sigma2 <- 0.05*var(z)
erreur <- rnorm(n,0,sqrt(sigma2))
y <- z+erreur
```
res <- npregress(x,y,bandwidth=0.02)
summary(res)
ord <- order(x)
plot(x,y)
lines(x[ord],predict(res)[ord])

ozone

Description

Los Angeles ozone pollution data, 1976. We deleted from the original data, the first 3 columns which were the Month, Day of the month and Day of the week. Each observation is one day, so there is 366 rows. The ozone data is a matrix with 9 columns.

Format

This data set is a matrix containing the following columns:

- [1] Ozone numeric Daily maximum one-hour-average ozone reading (parts per million) at Upland, CA.
- [2] Pressure.Vand numeric 500 millibar pressure height (m) measured at Vandenberg AFB.
- [4] Humidity numeric Humidity in percentage at LAX.
- [6] Inv.Base.height numeric Inversion base height (feet) at LAX.
- [7] Pressure.Grad numeric Pressure gradient (mm Hg) from LAX to Daggett, CA.
- [8] Inv.Base.Temp numeric Inversion base temperature (degrees F) at LAX.
- [9] Visibility numeric Visibility (miles) measured at LAX.

Source

See Also

ibr

plot.forwardibr
 Plot diagnostic for an ibr object

Description

One plot is currently available: a plot of residuals against fitted values.
Usage

```r
## S3 method for class 'forwardibr'
plot(x, global=FALSE,...)
```

Arguments

- `x` Object of class `forwardibr`.
- `global` Boolean: if `global` is `TRUE` the color code is between the min and the max of `x` (except infinite value); if `global` is `FALSE` the color code is between the min and the max of each row.
- `...` further arguments passed to `image`.

Value

The function `plot.forwardibr` gives an image plot of the values of the criterion obtained by the forward selection process. Image is read from the bottom to the top. At the bottom row, there are all the univariate models and the selected variable is given by the lowest criterion. This variable is selected for the second row. At the second (bottom) row the second variable included is those which give the lowest criterion for this row etc. All the variables included in the final model (selected by forward search) are numbered on the image (by order of inclusion).

Author(s)

References

See Also

- `ibr`, `forward`

Examples

```r
## Not run: data(ozone, package = "ibr")
ibrsel <- forward(ibr(ozone[,-1],ozone[,1],df=1.2)
plot(ibrsel)
plot(apply(ibrsel,1,min,na.rm=TRUE),type="l")

## End(Not run)
```
plot.ibr

Plot diagnostic for an ibr object

Description

One plot is currently available: a plot of residuals against fitted values.

Usage

```r
## S3 method for class 'ibr'
plot(x, ...)
```

Arguments

- `x`: Object of class `ibr`.
- `...`: Further arguments passed to or from other methods.

Value

The function `plot.ibr` computes and returns a list of summary statistics of the fitted iterative bias reduction smoother given in `object`.

Author(s)

References

See Also

- `ibr`
- `summary.ibr`

Examples

```r
## Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,1], ozone[,1], df=1.2)
plot(res.ibr)
## End(Not run)"
**Description**

Evaluate the product of kernel function at \((X-valx)/bx\): Gaussian, Epanechnikov, Uniform, Quartic. This function is not intended to be used directly.

**Usage**

`poids(kernelx, X, bx, valx, n, p)`

**Arguments**

- `kernelx` Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").
- `X` Matrix of explanatory variables, size \(n, p\).
- `bx` The vector of different bandwidths, length \(p\).
- `valx` The vector of length \(p\) at which the product kernel is evaluated.
- `n` Number of rows of \(X\).
- `p` Number of columns of \(X\).

**Value**

Returns a vector which coordinates are the values of the product kernel at the given coordinate.

**Author(s)**


**See Also**

`ibr`

**predict.ibr**

**Predicted values using iterative bias reduction smoothers**

**Description**

Predicted values from iterative bias reduction object. Missing values are not allowed.
Usage

```r
S3 method for class 'ibr'
predict(object, newdata, interval=
 c("none", "confidence", "prediction"), ...)
```

Arguments

- `object` Object of class `ibr`.
- `newdata` An optional matrix in which to look for variables with which to predict. If omitted, the fitted values are used.
- `interval` Type of interval calculation. Only `none` is currently available.
- `...` Further arguments passed to or from other methods.

Value

Produces a vector of predictions.

Author(s)


References


See Also

`ibr`, `summary.ibr`

Examples

```r
Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,1], ozone[,1], df=1.2, K=1:500)
summary(res.ibr)
predict(res.ibr)
End(Not run)
```
predict.npregress

Predicted values using using local polynomials

Description

Predicted values from a local polynomials of degree less than 2. See locpoly for fast binned implementation over an equally-spaced grid of local polynomial (gaussian kernel only)
Missing values are not allowed.

Usage

```r
S3 method for class 'npregress'
predict(object, newdata, interval=
c("none", "confidence", "prediction"), deriv=FALSE, ...)
```

Arguments

- `object`: Object of class `npregress`.
- `newdata`: An optional vector of values to be predicted. If omitted, the fitted values are used.
- `interval`: Type of interval calculation. Only `none` is currently available.
- `deriv`: Boolean. If `TRUE` it returns the first derivative of the local polynomial (of degree 1).
- `...`: Further arguments passed to or from other methods.

Value

Produces a vector of predictions. If `deriv` is `TRUE` the value is a named list with components: `yhat` which contains predictions and (if relevant) `deriv` the first derivative of the local polynomial of degree 1.

Author(s)


References


See Also

```
npregress, summary.npregress, locpoly
```
Examples

```r
f <- function(x){sin(5*pi*x)}
n <- 100
x <- runif(n)
z <- f(x)
sigma2 <- 0.05*var(z)
erreur <- rnorm(n, 0, sqrt(sigma2))
y <- z + erreur
grid <- seq(min(x), max(x), length=500)
res <- npregress(x, y, bandwidth=0.02, control.par=list(degree=1))
plot(x, y)
lines(grid, predict(res, grid))
```

Description

`print` method for class “summary.ibr”.

Usage

```r
S3 method for class 'summary.ibr'
print(x, displaybw=FALSE, digits =
max(3,getOption("digits") - 3), ...)
```

Arguments

- `x` Object of class `ibr`.
- `displaybw` Boolean that indicates if bandwidth are printed or not.
- `digits` Rounds the values in its first argument to the specified number of significant digits.
- `...` Further arguments passed to or from other methods.

Value

The function `print.summary.ibr` prints a list of summary statistics of the fitted iterative bias reduction model given in `x`.

Author(s)

print.summary.npregress

References


See Also

ibr, summary.ibr

Examples

```r
Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[, -1], ozone[, 1], df=1.2)
summary(res.ibr)
predict(res.ibr)
End(Not run)
```

print.summary.npregress

*Printing iterative bias reduction summaries*

Description

print method for class “summary.npregress”.

Usage

```r
S3 method for class 'summary.npregress'
print(x, digits =
max(3,getOption("digits") - 3), ...)
```

Arguments

- `x` Object of class npregress.
- `digits` Rounds the values in its first argument to the specified number of significant digits.
- `...` Further arguments passed to or from other methods.

Value

The function `print.summary.npregress` prints a list of summary statistics of the fitted iterative bias reduction model given in `x`. 
Author(s)


References


Examples

```r
f <- function(x){sin(5*pi*x)}
n <- 100
x <- runif(n)
z <- f(x)
sigma2 <- 0.05*var(z)
erreur <- rnorm(n,0,sqrt(sigma2))
y <- z+erreur
res <- npregress(x,y,bandwidth=0.02)
summary(res)
```

Description

`summary` method for class “ibr”.

Usage

```r
S3 method for class 'ibr'
summary(object, criteria="call", ...)
```

Arguments

- `object`: Object of class `ibr`.
- `criteria`: Character string which gives the criteria evaluated for the model. The criteria available are GCV (default, "gcv"), AIC ("aic"), corrected AIC ("aicc"), BIC ("bic") or gMDL ("gmdl"). The string "call" return the criterion used in the call of `ibr`.
- `...`: Further arguments passed to or from other methods.

Value

The function `summary.ibr` computes and returns a list of summary statistics of the fitted iterative bias reduction smoother given in object.

Author(s)

References


See Also

`ibr`, `summary.ibr`

Examples

```r
Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[, -1], ozone[, 1], df=1.2)
summary(res.ibr)
predict(res.ibr)
End(Not run)
```

---

**summary.npregress**  
*Summarizing local polynomial fits*

**Description**

summary method for class “npregress”.

**Usage**

```r
S3 method for class 'npregress'
summary(object, criteria="call", ...)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Object of class <code>npregress</code>.</td>
</tr>
<tr>
<td>criteria</td>
<td>Character string which gives the criteria evaluated for the model. The criteria available are GCV (default, &quot;gcv&quot;), AIC (&quot;aic&quot;), corrected AIC (&quot;aicc&quot;), BIC (&quot;bic&quot;) or gMDL (&quot;gmdl&quot;). The string &quot;call&quot; return the criterion used in the call of npregress.</td>
</tr>
<tr>
<td>...</td>
<td>Further arguments passed to or from other methods.</td>
</tr>
</tbody>
</table>

**Value**

The function `summary.npregress` computes and returns a list of summary statistics of the local polynomial smoother given in `object`.

**Author(s)**

References


See Also

npregress, summary.npregress

Examples

```r
f <- function(x){sin(5*pi*x)}
n <- 100
x <- runif(n)
z <- f(x)
sigma2 <- 0.05*var(z)
erreur <- rnorm(n,0,sqrt(sigma2))
y <- z+erreur
res <- npregress(x,y,bandwidth=0.02)
summary(res)
```

---

**sumvalpr**

*Sum of a geometric series*

**Description**

Calculates the sum of the first (k+1) terms of a geometric series with initial term 1 and common ratio equal to `valpr` (lower or equal to 1).

**Usage**

`sumvalpr(k, n, valpr, index1, index0)`

**Arguments**

- `k` The number of terms minus 1.
- `n` The length of `valpr`.
- `valpr` Vector of common ratio in decreasing order.
- `index1` The index of the last common ratio equal to 1.
- `index0` The index of the first common ratio equal to 0.

**Value**

Returns the vector of the sums of the first (k+1) terms of the geometric series.

**Author(s)**

References


See Also

`ibr`

---

**tracekernel**

*Trace of product kernel smoother*

---

**Description**

Evaluate the trace of the product of kernel smoother (Gaussian, Epanechnikov, Uniform, Quartic). This function is not intended to be used directly.

**Usage**

```r
tracekernel(x, bx, kernelx, n, p)
```

**Arguments**

- `x`: Matrix of explanatory variables, size `n, p`.
- `bx`: The vector of different bandwidths, length `p`.
- `kernelx`: Character string which allows to choose between gaussian kernel ("g"), Epanechnikov ("e"), uniform ("u"), quartic ("q").
- `n`: Number of rows of `X`.
- `p`: Number of columns of `X`.

**Value**

Evaluate the trace (effective degree of freedom) of the product kernel smoother.

**Author(s)**


**See Also**

`ibr`
Index

*Topic datasets
  ozone, 52

*Topic multivariate
  AIC.ibr, 4
  betaA, 5
  BIC, 8
  calcA, 10
  cvobs, 11
  DuchonQ, 15
  DuchonS, 16
  fittedA, 16
  forward, 20
  ibr, 23
  ibr.fit, 27
  iterchoiceA, 31
  iterchoiceAcv, 32
  iterchoiceAve, 34
  iterchoiceAe, 35
  iterchoiceS1, 36
  iterchoiceS1cv, 38
  iterchoiceS1cve, 39
  iterchoiceS1e, 41
  iterchoiceS1lrcv, 42
  iterchoiceS1lrcve, 44
  npregress, 50
  plot.forwardibr, 52
  plot.ibr, 54
  predict.ibr, 55
  predict.npregress, 57
  print.summary.ibr, 58
  print.summary.npregress, 59
  summary.ibr, 60
  summary.npregress, 61
  sumvalpr, 62

*Topic package
  ibr-package, 2

*Topic smooth
  AIC.ibr, 4
  betaA, 5
  betaS1, 6
  betaS1lr, 7
  BIC, 8
  bwchoice, 9
  calcA, 10
  cvobs, 11
  departnoyau, 12
  dssmoother, 13
  dsSx, 14
  DuchonQ, 15
  DuchonS, 16
  fittedA, 16
  fittedS1, 18
  fittedS1lr, 19
  forward, 20
  ibr, 23
  ibr.fit, 27
  iterchoiceA, 31
  iterchoiceAcv, 32
  iterchoiceAve, 34
  iterchoiceAe, 35
  iterchoiceS1, 36
  iterchoiceS1cv, 38
  iterchoiceS1cve, 39
  iterchoiceS1e, 41
  iterchoiceS1lrcv, 42
  iterchoiceS1lrcve, 44
  kernel, 45
  kernelSx, 46
  lambdachoice, 47
  lambdachoicelr, 48
  lrsmoother, 49
  npregress, 50
  plot.forwardibr, 52
  plot.ibr, 54
  poids, 55
  predict.ibr, 55
  predict.npregress, 57
  print.summary.ibr, 58
print.summary.npregress, 59
summary.ibr, 60
summary.npregress, 61
sumvalpr, 62
tracekernel, 63

AIC.ibr, 4
AICc (BIC), 8
as.data.frame, 20, 23

betaA, 5
beta1, 6
beta1lr, 7
BIC, 8
bwchoice, 9

calca, 10
choose.k, 21, 24, 28
critAaic (iterchoiceA), 31
critAaicc (iterchoiceA), 31
critAbic (iterchoiceA), 31
critAgcv (iterchoiceA), 31
critAgmdl (iterchoiceA), 31
critS1aic (iterchoiceS1), 36
critS1aicc (iterchoiceS1), 36
critS1bic (iterchoiceS1), 36
critS1gcv (iterchoiceS1), 36
critS1gmdl (iterchoiceS1), 36
cvobs, 11
departnoyau, 12
dssmoother, 13
dssx, 14
DuchonQ, 15
DuchonS, 16

epane (kernel), 45

fittedA, 16
fittedS1, 18
fittedS1lr, 19
formula, 20, 23
forward, 20, 53
forwardibr, 53
forwardibr (forward), 20

gam, 21, 24, 26, 28, 31
gaussien (kernel), 45
GCV (BIC), 8

ibr-package, 2
ibr.fit, 27
image, 53

iterchoiceA, 21, 25, 29, 31, 32, 36
iterchoiceAcv, 32
iterchoiceAcve, 34
iterchoiceAe, 26, 30, 35
iterchoiceS1, 21, 25, 29, 36, 37, 42
iterchoiceS1cv, 38
iterchoiceS1cve, 39
iterchoiceS1e, 26, 30, 41
iterchoiceS1rcv, 42
iterchoiceS1rcve, 44

kernel, 45
kernelsx, 46

lambdachoice, 47
lambdachoicelr, 48
locpoly, 50, 51, 57
lrsmoother, 49

npregress, 50, 57, 59, 61, 62
optimize, 21, 24, 29, 31, 32, 36–38, 42
ozone, 52

plot.forwardibr, 22, 52
plot.ibr, 54
poids, 55
predict.ibr, 26, 31, 55
predict.npregress, 51, 57
print.ibr (ibr), 23
print.npregress (npregress), 50
print.summary.ibr, 58
print.summary.npregress, 59

quartic (kernel), 45

residuals.ibr (ibr), 23
residuals.npregress (npregress), 50

scale, 25, 29
set.seed, 11, 33, 34, 38, 40, 43, 44
smoothCon, 26, 30, 49
summary.ibr, 4, 9, 26, 31, 54, 56, 59, 60, 61
summary.npregress, 51, 57, 61, 62
sumvalpr, 62
tracekernel, 63

uniform (kernel), 45

uniroot, 12, 21, 24, 28