Package ‘gamlss.add’

October 19, 2016

Description
Interface for extra smooth functions including tensor products, neural networks and decision trees.

Title Extra Additive Terms for GAMLSS Models
LazyLoad yes
Version 5.0-1
Date 2016-10-18
Depends R (>= 2.15.0), gamlss.dist, gamlss (>= 2.4.0), mgcv, nnet,
rpart, graphics, stats, utils, grDevices, methods
Suggests lattice
Author Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby, Vla-
sios Voudouris, Daniil Kiose
Maintainer Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>
License GPL-2 | GPL-3
URL http://www.gamlss.org/
NeedsCompilation no
Repository CRAN
Date/Publication 2016-10-19 13:07:24

R topics documented:

 blag ... 2
 fitFixedKnots .. 4
 fk ... 6
 ga ... 9
 gamlss.fk ... 13
 gamlss.ga ... 14
 gamlss.nn ... 15
 la ... 16
 nn ... 18
 penLags ... 21
 plot.nnet .. 23
 tr ... 26
Functions to create lag values

Description

The function blag() creates a basis for lag values of x, (a matrix of lag values of x). The function llag() creates a list with two components i) a basis matrix and ii) weights to be used as prior weights in any regression analysis. The function wlag() can take a "mlags" object (created by blag()) or a vector and returns a vector with ones and zeros. This can be used as prior weights in any analysis which uses blag().

Usage

blag(x, lags = 1, fromlag=0, omitna = FALSE, value = NA, ...)
llag(x, ...)
wlag(x, lags = NULL)

Arguments

x For blag() and llag() x is the vector for creating lags. For wlag() x is an mlags object created by blag().

lags how many lags are required
fromlag where the lags are starting from. The default values is zero which indicates that the x is also included as a first column. If you want x not to included in the matrix use fromlag=1
omitna if true the first "lag" rows of the resulting matrix are omitted
value value : what values should be set in the beginning of the lags columns, by default is set to NA
...
additional arguments

Details

Those three functions are design for helping a user to fit regression model using lags by generating the appropriate structures. The function blag() creates a basis for lag values of x. It assumed that time runs from the oldest to the newest observations. That is, the latest observations are the most recent ones. The function wlag() take a basis matrix of lags and creates a vector of weights which can be used as a prior weights for any regression type analysis which has the matrix as explanatory variable. The function llag() creates a list with the matrix base for lags and the appropriate weights.
Value

The function `blag()` returns a "mlags" object (matrix of lag values). The function `llag()` returns a list with components:

- **matrix**: The basis of the lag matrix
- **weights**: The weights vector

The function `wlag()` returns a vector of prior weights having. The vector starts with zeros (as many as the number of lags) and continues with ones.

Author(s)

Mikis Stasinopoulos <<mikis.stasinopoulos@gamlss.org>>, Bob Rigby <<r.rigby@londonmet.ac.uk>>, Vlasios Voudouris <<v.voudouris@londonmet.ac.uk>>, Majid Djennad, Paul Eilers.

References

See Also

penLags

Examples

```r
library(stats)
y <- arima.sim(500, model=list(ar=c(.4,.3,.1)))
X <- blag(y, lags=5, from.lag=1, value=0)
head(X)
w<-wlag(X)
library(gamlss)
m1<-gamlss(y~X, weights=w )
summary(m1)
plot(y)
lines(fitted(m1)-as.numeric(time(y)), col="blue")
```
fitFixedKnots

Functions to Fit Univariate Break Point Regression Models

Description

There are two main functions here. The functions `fitFixedKnots` allows the fit a univariate regression using piecewise polynomials with "known" break points while the function `fitFreeKnots` estimates the break points.

Usage

```r
fitFixedKnots(y, x, weights = NULL, knots = NULL, data = NULL, degree = 3,
            fixed = NULL, base=c("trun","Bbase"), ...)
fitFreeKnots(y, x, weights = NULL, knots = NULL, degree = 3, fixed =
            NULL, trace = 0, data = NULL, base=c("trun","Bbase"), ...)
```

Arguments

- `x` the x variable (explanatory)
- `y` the response variable
- `weights` the prior weights
- `knots` the position of the interior knots for `fitFixedKnots` or starting values for `fitFreeKnots`
- `data` the data frame
- `degree` the degree if the piecewise polynomials
- `fixed` this is to be able to fit fixed break points
- `base` The basis for the piecewise polynomials, turn for truncated (default) and Bbase for B-base piecewise polynomials
- `trace` controlling the trace of of `optim()`
- `...` for extra arguments

Details

The functions `fitFreeKnots()` is loosely based on the `curfit.free.knot()` function of package `DierckxSpline` of Sundar Dorai-Raj and Spencer Graves.

Value

The functions `fitFixedKnots` and `fitFreeKnots` return an object `FixBreakPointsReg` and `FreeBreakPointsReg` respectively with the following items:

- `fitted.values` the fitted values of the model
- `residuals` the residuals of the model
- `df` the degrees of freedom fitted in the model
- `rss` the residuals sum of squares
fitFixedKnots

- **knots**: the knots used in creating the beta-function base
- **fixed**: the fixed break points if any
- **breakPoints**: the interior (estimated) break points (or knots)
- **coef**: the coefficients of the linear part of the model
- **degree**: the degree of the piecewise polynomial
- **y**: the y variable
- **x**: the x variable
- **w**: the prior weights

Note

The prediction function in piecewise polynomials using the B-spline basis is tricky because by adding the new data for x to the current one the B-basis function for the piecewise polynomials changes. This does not seem to be the case with the truncated basis, that is, when the option `base="turn"` is used (see the example below).

If the new data are outside the range of the old x then there could a considerable discrepancies between the all fitted values and the predicted ones if the option `base="Bbase"` is used. The prediction function for the objects `FixBreakPointsReg` or `FreeBreakPointsReg` has the option `old.x.range=TRUE` which allow the user two choices:

The first is to use the old end-points for the creation of the new B-basis which were determine from the original range of x. This choice is implemented as a default in the predict method for `FixBreakPointsReg` and `FreeBreakPointsReg` objects with the argument `old.x.range=TRUE`.

The second is to create new end-points from the new and old data x values. In this case the range of x will be bigger that the original one if the new data has values outside the original x range. In this case (`old.x.range=FALSE`) the prediction could be possible better outside the x range but would not coincide with the original predictions i.e. fitted(model) since basis have changed.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

Examples

```r
# creating a linear + linear function
x <- seq(0,10, length.out=201)
knot <- 5
set.seed(12543)
mu <- ifelse(x<=knot,5+0.5*x,5+0.5*x*(x-knot))
y <- rNO(201, mu=mu, sigma=.5)
# plot the data
plot(y~x, xlim=c(-1,13), ylim=c(3,18))

# fit model using fixed break points
m1 <- fitFixedKnots(y, x, knots=5, degree=1)
knots(m1)
lines(fitted(m1)-x, col="red")

# now estimating the knot
m2 <- fitFreeKnots(y, x, knots=5, degree=1)
knots(m2)
summary(m2)

# now predicting
plot(y~x, xlim=c(-5,13), ylim=c(3,18))
lines(fitted(m2)-x, col="green", lwd=3)
points(-2:13,predict(m2, newdata=-2:13), col="red", pch = 21, bg="blue")
points(-2:13,predict(m2, newdata=-2:13, old.x.range=FALSE), col="red", pch = 21, bg="grey")

# fit different basis
m21 <- fitFreeKnots(y, x, knots=5, degree=1, base="Bbase")
deviance(m2)
deviance(m21) # should be identical

# predicting with m21
plot(y~x, xlim=c(-5,13), ylim=c(3,18))
lines(fitted(m21)-x, col="green", lwd=3)
points(-2:13,predict(m21, newdata=-2:13), col="red", pch = 21, bg="blue")
points(-2:13,predict(m21, newdata=-2:13, old.x.range=FALSE), col="red", pch = 21, bg="grey")
```

fk

A function to fit break points within GAMLSS

Description

The fk() function is a additive function to be used for GAMLSS models. It is an interface for the fitFreeKnots() function of package gamlss.util. The functions fitFreeKnots() was first based on the curfit.free.knot() function of package DierckxSpline of Sundar Dorai-Raj and Spencer Graves. The function fk() allows the user to use the free knots function fitFreeKnots() within gamlss. The great advantage of course comes from the fact GAMLSS models provide a variety of distributions and diagnostics.
Usage

```r
fk(x, start=NULL, control=fk.control(...), ...)
fk.control(degree = 1, all.fixed = FALSE, fixed = NULL, base = c("trun", "Bbase"))
```

Arguments

- `x` the x-variable
- `start` starting values for the breakpoints. If are set the number of break points is also determined by the length of `start`
- `control` the degree of the spline function fitted
- `...` for extra arguments
- `degree` the degree of the based function
- `all.fixed` whether to fix all parameter
- `fixed` the fixed break points
- `base` Which base should be used

Details

Note that `fk` itself does no smoothing; it simply sets things up for the function `gamlss()` which in turn uses the function `additive.fit()` for backfitting which in turn uses `gamlss.fk()`. Note that, finding the break points is not a trivial problem and therefore multiple maximum points can occur. More details about the free knot splines can be found in package Dierckx, (1991).

The `gamlss` algorithm used a modified backfitting in this case, that is, it fits the linear part fist. Note that trying to predict outside the x-range can be dangerous as the example below shows.

Value

The `gamlss` object saved contains the last fitted object which can be accessed using `obj$par.coefsmo` where `obj` is the fitted `gamlss` object `par` is the relevant distribution parameter.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby

References

See Also

`gamlss.fk`
Examples

```r
## creating a linear + linear function
x <- seq(0, 10, length.out=201)
knot <- 5
set.seed(12543)
mu <- ifelse(x<=knot,5+0.5*x,5+0.5*x+1.5*(x-knot))
y <- rnorm(201, mu, sigma=.5)

## plot the data
plot(y~x, xlab=c(-1,13), ylab=c(3,23))

## fit model using curfit
m1 <- fitFreeKnots(y, x, knots=3, degree=1)
knots(m1)

## fitted values
lines(fitted(m1)-x, col="red", lwd="3")

## predict
pm1 <- predict(m1, newdata=-1:12)
points(-1:12, pm1, col="red", pch = 21, bg="blue")

## now gamlss

## now negative binomial data
knot=4
eta1 <- ifelse(x<=knot,0.8+0.08*x,.8+0.08*x+.3*(x-knot))
plot(eta1~x)
set.seed(143)
y <- rnb[,mu=exp(eta1), sigma=.1]
da <- data.frame(y=y, x=x)

## getting the break point using profile deviance
n1 <- quote(gamlss(y ~ x+I((x>1)* (x<1)), family=NB1, data=da))
prof.term(n1, min=1, max=9, criterion="GD", start.prev=FALSE)

## now fit the model using fk
g1 <- gamlss(y~fk(x, degree=1, start=c(4)), data=da, family=NB1)
## get the breakpoint
knots(getsmo(g1))

## summary of the gamlss object FreeBreakPointsReg object
getsmo(g1)
## plot fitted model
plot(y~x, data=da)
lines(fitted(g1)-x, data=da, col="red")

## the aids data as example where things can go wrong
## using fk()
data(aids)
a1 <- gamlss(y~x+fk(x, degree=1, start=25)+qrt, data=aids, family=NB1)
knots(getsmo(a1))

## using profile deviance
aids.1 <- quote(gamlss(y ~ x+I((x>1)* (x<1))+qrt,family=NB1, data=aids))
prof.term(aids.1, min=16, max=21, step=.1, start.prev=FALSE)
## The Maximum Likelihood estimator is 18.33231 not 17.37064
## plotting the fit
with(aids, plot(x,y, pch=21, bg=c("red", "green3", "blue", "yellow")[unclass(qrt)]))
```
A interface functions to use Simon Wood’s gam() and bam() functions within GAMLSS

Description

The ga() and ba() functions are a additive functions to be used within GAMLSS models. They are interfaces for the gam() and the bam() functions of package mgcv of Simon Wood. The functions gam() and the bam() allows the user to use all the available smoothers of the package mgcv() within gamlss. The great advantage of course come from fitting models outside the exponential family.

Usage

ga(formula, control = ga.control(...), ...)

ba(formula, control = ba.control(...), ...)

ga.control(offset = NULL, method = "REML", optimizer = c("outer", "newton"), select = FALSE, knots = NULL, sp = NULL, min.sp = NULL, H = NULL, gamma = 1, paraPen = NULL, in.out = NULL, drop.unused.levels = TRUE, drop.intercept = NULL, ...)

ba.control(offset = NULL, method = "FREML", select = FALSE, scale = 0, gamma = 1, knots = NULL, sp = NULL, min.sp = NULL, paraPen = NULL, chunk.size = 10000, rho = 0, AR.start = NULL, discrete = FALSE, cluster = NULL, nthreads = NA, gc.level = 1, use.chol = FALSE, samfrac = 1, drop.unused.levels = TRUE, drop.intercept = NULL, ...)

Arguments

formula A formula containing s() and te functions i.e. ~s(x1)+ te(x2,x3).
control this allow to specify argument within the function gam() of mgcv
offset the offset argument in gam() and bam()
method the method argument in gam() and bam()
opimizer the method optimizer in gam()
select the select argument in gam() and bam()
knots the knots argument in gam() and bam()
sp the sp argument in gam() and bam()
min.sp the min.sp argument in gam() and bam()
H a user supplied fixed quadratic penalty on the parameters in gam()
gammas the gamma argument in gam() and bam() paraPen the paraPen argument in gam() and bam() in.out the in.out argument in gam() drop.unused.levels by default unused levels are dropped from factors before fitting for gam() and bam() drop.intercept set to TRUE to force the model to really not have the a constant in the parametric model part for gam() and bam() scale scale parameter for bam() (should not used in gamlss) chunk.size the model matrix is created in chunks used in bam() rho an AR1 error model can be used for the residuals see the help in bam() AR.start see the help in bam() for explanation discrete with method="fREML" it is possible to discretize covariates see the help in bam() cluster whether QR decomposition in parallel see the help in bam() nthreads number of threads to use for non-cluster computation see the help in bam() gc.level to keep the memory footprint down see the help in bam() use.chol whether Choleski decomposition see the help in bam() samfrac sampling fraction see the help in bam() ... extra options to pass to gam.control()

Details

Note that ga itself does no smoothing; it simply sets things up for the function gamlss() which in turn uses the function additive.fit() for back-fitting which in turn uses gamlss.ga()

Note that, in our (limited) experience, for normal errors or exponential family, the fitted models using gam() and ga() within gamlss() are identical or at least very similar. This is particularly true if the default values for gam() are used.

Value

the fitted values of the smoother is returned, endowed with a number of attributes. The smoother fitted values are used in the construction of the overall fitted values of the particular distribution parameter. The attributes can be use to obtain information about the individual fit. In particular the coefSmo within the parameters of the fitted model contains the final additive fit.

Warning

The function is experimental so please report any peculiar behaviour to the authors

Author(s)

Mikis Stasinopoulos
References

Examples

```r
library(mgcv)
data(rent)
#---------------------------------------------------------------
## normal errors one x-variable
ga1 <- gam(R~s(F1, bs="ps", k=20), data=rent, method="REML")
gn1 <- gamlss(R~ga(~s(F1, bs="ps", k=20), method="REML"), data=rent) # additive
gb1 <- gamlss(R~pb(F1), data=rent) # additive
AIC(ga1, gn1, gb1)
AIC(ga1, gn1, gb1)
#---------------------------------------------------------------
## normal error additive in F1 and A

ga2 <- gam(R~s(F1)+s(A), method="REML", data=rent)
gn2 <- gamlss(R~ga(~s(F1)+s(A), method="REML"), data=rent) # additive
gb2 <- gamlss(R~pb(F1)+pb(A), data=rent) # additive
AIC(ga2, gn2, gb2)
AIC(ga2, gn2, gb2)
#---------------------------------------------------------------
## Not run:
## gamma error additive in F1 and A

ga3 <- gam(R~s(F1)+s(A), method="REML", data=rent, family=Gamma(log))
gn3 <- gamlss(R~ga(~s(F1)+s(A), method="REML"), data=rent, family=GA) # additive
gb3 <- gamlss(R~pb(F1)+pb(A), data=rent, family=GA) # additive
AIC(ga3, gn3, gb3)
AIC(ga3, gn3, gb3)
#---------------------------------------------------------------
## gamma error surface fitting

ga4 <- gam(R~s(F1,A), method="REML", data=rent, family=Gamma(log))
gn4 <- gamlss(R~ga(~s(F1,A), method="REML"), data=rent, family=GA)
AIC(ga4, gn4)
AIC(ga4, gn4)
## plot the fitted surfaces
op<-par(mfrow=c(1,2))
vis.gam(ga4)
vis.gam(getSmo(gn4))
par(op)
## contour plot using mgcv's plot() function
```
plot(getSmo(gn4))
#---
predict
newrent <- data.frame(expand.grid(F1=seq(30,120,5), A=seq(1990,1990,5)))
newrent1 <-newrent2 <- newrent
newrent$pred <- predict(ga4, newdata=newrent, type="response")
newrent2$pred <- predict(gn4, newdata=newrent, type="response")
library(lattice)
wf1<-wireframe(pred~F1*A, newrent1, aspect=c(1,0.5), drape=TRUE,
 colorkey=list(space="right", height=0.6), main="gam()")
wf2<-wireframe(pred~F1*A, newrent2, aspect=c(1,0.5), drape=TRUE,
 colorkey=list(space="right", height=0.6), main="gamlss()")
print(wf1, split=c(1,1,2,1), more=TRUE)
print(wf2, split=c(2,1,2,1))
#---
gamma error two variables te() function
ga5 <- gam(R~te(F1,A), data=rent, family=Gamma(log))
gn5 <- gamlss(R~ga(-te(F1,A)), data=rent, family=GA)
AIC(ga5,gn5)
AIC(ga5,gn5, k=0)
op<-par(mfrow=c(1,2))
vis.gam(ga5)
vis.gam(getSmo(gn5))
par(op)
#---
use of Markov random fields
example from package mgcv of Simon Wood
Load Columbus Ohio crime data (see ?columbus for details and credits)
data(columb) ## data frame
data(columb.polys) ## district shapes list
x<-
list(polys=columb.polys) ## neighbourhood structure info for MRF
First a full rank MRF...
b <- gam(crime ~ s(district,bs="mrf",xt=xt),data=columb,method="REML")
bb <- gamlss(crime~ ga(~s(district,bs="mrf",xt=xt), method="REML"), data=columb)
AIC(b,bb, k=0)
op<-par(mfrow=c(2,2))
plot(b,scheme=1)
plot(bb$mu.coefSmo[[1]], scheme=1)
Compare to reduced rank version...
b <- gam(crime ~ s(district,bs="mrf",k=20,xt=xt),data=columb,method="REML")
bb <- gamlss(crime~ ga(~s(district,bs="mrf",k=20,xt=xt), method="REML"),
data=columb)
AIC(b,bb, k=0)
plot(b,scheme=1)
plot(bb$mu.coefSmo[[1]], scheme=1)
par(op)
An important covariate added...
b <- gam(crime ~ s(district,bs="mrf",k=20,xt=xt)+s(income),
data=columb,method="REML")
x in gam()
bb <- gamlss(crime~ ga(~s(district,bs="mrf",k=20,xt=xt)+s(income),
method="REML"), data=column)
x in gamlss()
bbb <- gamlss(crime ~ g(a(~s(district, bs="mrf", k=20, xt=xt),
 method="REML") + pb(income), data=columb)
AIC(b, bb, bbb)
plotting the fitted models
op<-par(mfrow=c(2,2))
plot(b, scheme=c(0,1))
plot(getSmo(bbb), scheme=c(0,1))
par(op)
plot(getSmo(bbb, which=2))
plot fitted values by district
op<- par(mfrow=c(1,2))
fv <- fitted(b)
names(fv) <- as.character(columb$district)
fv1 <- fitted(bbb)
names(fv1) <- as.character(columb$district)
polys.plot(columb.polys, fv)
polys.plot(columb.polys, fv1)
par(op)
End(Not run)
bam

gamlss.fk

Support for Function fk()

Description

This is support for the functions fk(). It is not intended to be called directly by users. The function `gamlss.fk` is calling on the R function `curfit.free.knot()` of Sundar Dorai-Raj

Usage

```
gamlss.fk(x, y, w, xeval = NULL, ...)
```

Arguments

- **x**: the design matrix
- **y**: the response variable
- **w**: prior weights
- **xeval**: used in prediction
- **...**: for extra arguments

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby
References

See Also

fk

gamlss.ga "Support for Function ga() and ba()"

Description

This is support for the smoother functions ga() and ba() interfaces for Simon Wood’s gam() and bam() functions from package mgcv. It is not intended to be called directly by users.

Usage

```r
gamlss.ga(x, y, w, xeval = NULL, ...)
gamlss.ba(x, y, w, xeval = NULL, ...)
```

Arguments

- `x` the explanatory variables
- `y` iterative y variable
- `w` iterative weights
- `xeval` if xeval=TRUE then predicion is used
- `...` for extra arguments

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby
References

gamlss.nn

Support for Function nn()

Description

This is support for the smoother function nn() an interface for Brian Reply’s nnet() function. It is not intended to be called directly by users.

Usage

gamlss.nn(x, y, w, xeval = NULL, ...)

Arguments

- **x**
 - the explanatory variables
- **y**
 - iterative y variable
- **w**
 - iterative weights
- **xeval**
 - if xeval=TRUE then prediction is used
- **...**
 - for extra arguments

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby

References

See Also
ga

Description

The function la() can be used for fitting penalised lags for explanatory variables.

Usage

```r
la(x, control = la.control(...), ...)  
la.control(lags = 10, from.lag = 0, df = NULL, lambda = NULL,  
          start.lambda = 10, order = 1, plot = FALSE,  
          method = c("ML", "GAIC"), k = 2, ...)  
gamlss.la(x, y, w, xeval = NULL, ...)
```

Arguments

- `x` the name of the explanatory variable
- `y` internally evaluated (iterative working variable)
- `w` internally evaluated (iterative weights)
- `xeval` internally evaluated no need for specification here
- `control` a list of a number of control parameters for the fitting function penLags()
- `lags` the number of lags
- `from.lag` from which lag value to start, the default is zero which means include the original `x` in the basis
- `df` use this if you want to fix the degrees of freedom
- `lambda` use this if you would like to fix the smoothing parameter
- `start.lambda` initial starting value for lambda
- `order` the order of the penalty
- `plot` whether you would like a plot of the data
- `method` method of fitting if lambda or df are not specified
- `k` the penalty used if method "GAIC" is used
- `...` for further arguments
Details

The idea of penalised lags is that we use a large amount of lags but we penalised their fitted coefficients and therefore we use few degrees of freedom. The penalty and method of fitting are the same as in the pb() function of gamlss. This function does not do the fitting this is achieved by the function gamlss.la() which uses the function penLags for the fitting.

Value

A vector of zeros is returned, endowed with a number of attributes. The vector itself is used in the construction of the model matrix (contributing nothing), while the attributes are needed for the back-fitting algorithms of the additive fit.

Note

Note that an appropriate prior weight is needed in the gamlss fit.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby, Vlasios Voudouris, Majid Djennad, and Paul Eilers.

References

See Also

penLags

Examples

```r
## the data
dax <- EuStock Markets[,"DAX"]
plot(dax)
## using a penalised autoregressive model
w <- wlag(dax, lag=20)
m1 <- gamlss(dax~ la(dax, lags=20, order=1, from.lag=1), weights=w)
lines(fitted(m1)%>%as.numeric(time(dax)), col=2)
wp(m1, ylim=all=1) # not very good model
## Not run:
```
Description

The `nn()` function is an additive function to be used for GAMLSS models. It is an interface for the `nnet()` function of package `nnet` of Brian Ripley. The function `nn()` allows the user to use neural networks within `gamlss`. The great advantage of course comes from the fact GAMLSS models provide a variety of distributions and diagnostics.

Usage

```
nn(formula, control = nn.control(...), ...)nn.nn.control(size = 3, linout = TRUE, entropy = FALSE, softmax = FALSE,
             censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
             maxit = 100, Hess = FALSE, trace = FALSE,
             MaxNWts = 1000, abstol = 1e-04, reltol = 1e-08)
```

Arguments

- `formula` A formula containing the explanatory variables i.e. ~x1+x2+x3.
control

control to pass the arguments for the nnet() function

... for extra arguments

size

number of units in the hidden layer. Can be zero if there are skip-layer units

linout

switch for linear output units. Default is TRUE, identify link

entropy

switch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.

softmax

switch for softmax (log-linear model) and maximum conditional likelihood fitting. linout, entropy, softmax and censored are mutually exclusive.

censored

A variant on softmax, in which non-zero targets mean possible classes. Thus for softmax a row of (0, 1, 1) means one example each of classes 2 and 3, but for censored it means one example whose class is only known to be 2 or 3.

skip

switch to add skip-layer connections from input to output

rang

Initial random weights on \([-\text{rang}, \text{rang}]\). Value about 0.5 unless the inputs are large, in which case it should be chosen so that \(\text{rang} \times \max(|x|)\) is about 1

decay

parameter for weight decay. Default 0.

maxit

parameter for weight decay. Default 0.

Hess

If true, the Hessian of the measure of fit at the best set of weights found is returned as component Hessian.

trace

switch for tracing optimization. Default FALSE

MaxNWts

The maximum allowable number of weights. There is no intrinsic limit in the code, but increasing MaxNWts will probably allow fits that are very slow and time-consuming.

abstol

Stop if the fit criterion falls below abstol, indicating an essentially perfect fit.

reltol

Stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1 - reltol.

Details

Note that, neural networks are over parameterized models and therefore notorious for multiple maximum. There is no guarantee that two identical fits will produce identical results.

Value

Note that nn itself does no smoothing; it simply sets things up for the function gamlss() which in turn uses the function additive.fit() for backfitting which in turn uses gamlss.nn()?

Warning

You may have to fit the model several time to unsure that you obtain a reasonable minimum

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby based on work of Venables & Ripley which also based on work by Kurt Hornik and Albrecht Gebhardt.
References

Examples

library(nnet)
data(rock)
area1 <- with(rock, area/10000)
peri1 <- with(rock, peri/10000)
rock1 <- with(rock, data.frame(perm, area=area1, peri=peri1, shape))
fit nnet
r1 <- nnet(log(perm)-area+peri+shape, rock1, size=3, decay=1e-3, linout=TRUE, skip=TRUE, max=1000, Hess=TRUE)
summary(r1)
get gamlss
library(gamlss)
cc <- nn.control(size=3, decay=1e-3, linout=TRUE, skip=TRUE, max=1000, Hess=TRUE)
g1 <- gamlss(log(perm)-nn(~area+peri+shape, size=3, control=cc), data=rock1)
summary(g1$mu.coefSmo[[1]])
predict
Xp <- expand.grid(area=seq(0.1,1.2,0.05), peri=seq(0,0.5, 0.02), shape=0.2)
rocknew <- cbind(Xp, fit=predict(r1, newdata=Xp))
library(lattice)
wfl <- wireframe(fit~area+peri, rocknew, screen=list(z=160, x=-60), aspect=c(1, 0.5), drape=TRUE, main="nnet()")
rocknew1 <- cbind(Xp, fit=predict(g1, newdata=Xp))
wf2 <- wireframe(fit~area+peri, rocknew1, screen=list(z=160, x=-60), aspect=c(1, 0.5), drape=TRUE, main="nn()")
print(wf1, split=c(1,1,2,1), more=TRUE)
print(wf2, split=c(2,1,2,1))

#---
data(rent)
mr1 <- gamlss(R~nn(~F1+A, size=5, decay=0.001), data=rent, family=GA)
library(gamlss.add)
mgl1 <- gamlss(R~ga(~s(F1,A)), data=rent, family=GA)
AIC(mr1,mgl1)
newrent <- newrent1 <- newrent2 <- data.frame(expand.grid(F1=seq(30,120,5), A=seq(1890,1990,5)))
newrent1$fit <- predict(mr1, newdata=newrent, type="response") ##nn
newrent2$fit <- predict(mgl1, newdata=newrent, type="response")# gam
penLags

Penalised Lag Regression Function

Description

The function `penLags()` fits a regression model to lags of an explanatory variable `x` or to lags of `y` itself. The estimated coefficients of the lags are penalised using a quadratic penalty similar to P-splines.

Usage

```r
penLags(y, x, lags = 10, from.lag = 0, weights = NULL, data = NULL, df = NULL,
    lambda = NULL, start.lambda = 10, order = 1,
    plot = FALSE, method = c("ML", "GAIC"), k = 2, ...)
```

Arguments

- **y**: The response variable
- **x**: The explanatory variable which can be the response itself if autoregressive model is required
- **lags**: The number of lags required
- **from.lag**: from which lag value to start, the default is zero which means include the original `x` in the basis
- **weights**: The prior weights
- **data**: The data frame if needed
df If not NULL this argument sets the required effective degrees of freedom for the penalty
lambda If not NULL this argument sets the required smoothing parameter of the penalty
start.lambda Staring values for lambda for the local ML estimation
order The order of the penalties in the beta coefficients
plot Whether to plot the data and the fitted values
method The method of estimating the smoothing parameter with two alternatives, i) ML: the local maximum likelihood estimation method (or PQL method) ii) GAIC: the generalised Akaike criterion method of estimating the smoothing parameter
k The penalty required if the method GAIC is used i.e. k=2 for AIC or k=log(n) if BIC (or SBC).
... for further arguments

Details
This function is designed for fitting a simple penalised lag regression model to a response variable. The meaning of simple in this case is that only one explanatory variable can used (whether it is a true explanatory or the response variable itself) and only a normal assumption for the response is made. For multiple explanatory variables and for different distributions within gamlss use the additive function la.

Value
Returns penLags objects which has several method.

Author(s)
Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby, Vlasios Voudouris, Majid Djennad, and Paul Eilers.

References
Examples

```r
# generating data
y <- arima.sim(500, model=list(ar=c(.9, -.8)))

# fitting model with different order
m0 <- penLags(y, y, lag=20, order=0)
m1 <- penLags(y, y, lag=20, order=1)
m2 <- penLags(y, y, lag=20, order=2)
m3 <- penLags(y, y, lag=20, order=3)

# choosing the order
AIC(m0, m1, m2, m3)

# look at the AR coefficients of the models
op <- par(mfrow=c(2,2))
plot(coef(m0, "AR"), type="h")
plot(coef(m1, "AR"), type="h")
plot(coef(m2, "AR"), type="h")
plot(coef(m3, "AR"), type="h")
par(op)

# refit and plotting model
m1 <- penLags(y, y, lag=20, order=1, plot=TRUE)

# looking at the residuals
plot(resid(m1))
acf(resid(m1))
pacf(resid(m1))

# or better use plot, wp or dtop
plot(m1, ts=TRUE)
wp(m1)
dtop(m1)

# the coefficients
coef(m1)
coef(m1, "AR")
coef(m1, 'varComp')

# print(m1)
# summary(m1)
# use prediction
plot(ts(c(y, predict(m1, 100))))
```

plot.nnet

Plotting fitted neural networks

Description

A function to plot the results of a neural network fit based on the `plotnet()` function of the package `NeuralNetTools`
Usage

```r
## S3 method for class 'nnet'
## S3 method for class 'nnet'
plot(x, nid = TRUE, all.out = TRUE, all.in = TRUE, bias = TRUE,
wts.only = FALSE, rel.rsc = 5, circle.cex = 5, node.labs = TRUE,
var.labs = TRUE, x.lab = NULL, y.lab = NULL, line.stag = NULL,
struct = NULL, cex.val = 1, alpha.val = 1, circle.col = "lightblue",
pos.col = "black", neg.col = "grey", max.sp = FALSE, ...)
```

Arguments

- `x`: A neural network fitted model
- `nid`: logical value indicating if neural interpretation diagram is plotted, default is TRUE
- `all.out`: character string indicating names of response variables for which connections are plotted, default all
- `all.in`: character string indicating names of input variables for which connections are plotted, default all
- `bias`: logical value indicating if bias nodes and connections are plotted, not applicable for networks from mlp function, default TRUE
- `wts.only`: logical value indicating if connections weights are returned rather than a plot, default FALSE
- `rel.rsc`: numeric value indicating maximum width of connection lines, default 5
- `circle.cex`: numeric value indicating size of nodes, passed to cex argument, default 5
- `node.labs`: logical value indicating if text labels are plotted, default TRUE
- `var.labs`: logical value indicating if variable names are plotted next to nodes, default TRUE
- `x.lab`: character string indicating names for input variables, default from model object
- `y.lab`: character string indicating names for output variables, default from model object
- `line.stag`: numeric value that specifies distance of connection weights from nodes
- `struct`: numeric value of length three indicating network architecture (no nodes for input, hidden, output), required only if mod.in is a numeric vector
- `cex.val`: numeric value indicating size of text labels, default 1
- `alpha.val`: numeric value (0-1) indicating transparency of connections, default 1
- `circle.col`: text value indicating colour of nodes default "lightblue"
- `pos.col`: text value indicating colour of the positive connections, default "black"
- `neg.col`: text value indicating colour of the negative connections, default "gray"
- `max.sp`: logical value indication whether the space between nodes in each layer is maximised
- `...`: for further arguments
Details

The function `plot.nnet()` is (almost) identical to the function `plot.nnet()` created by Marcus W. Beck it was first published in the web but now is part of the NeuralNetTools package in R under the name `plotnet()`. Here we modify the function so it works within the `gamlss.add` package. This involves of borrowing the functions `rescale()`, `zero_range()` and `alpha()` from package `scales`.

Value

The function is producing a plot

Author(s)

Marcus W. Beck <mbafs2012@gmail.com> modified by Mikis Stasinopoulos

References

Hadley Wickham (2014). scales: Scale functions for graphics. R package version 0.4.0. https://cran.r-project.org/package=scales

See Also

`nn`

Examples

```r
r1 <- gamlss(R~nn(-Fl+A+H+loc, size=10, decay=0.2), data=rent, 
    family=GA, gd.tol=1000, n.cyc=5) 
getSmo(r1) 
plot(getSmo(r1), y.lab=expression(eta[1]))
plot(getSmo(r1), y.lab=expression(g[1](mu)))
## Not run:
r2 <- gamlss(R~nn(-Fl+A+H+loc, size=10, decay=0.2), data=rent, 
    family=GA, gd.tol=1000, n.cyc=5) 
plot(getSmo(r2), y.lab=expression(g[1](mu)))
plot(getSmo(r2, what="sigma"), y.lab=expression(g[2](sigma)))
## End(Not run)
```
Description

The tr() function is an additive function to be used for GAMLSS models. It is an interface for the rpart() function of package rpart. The function tr() allows the user to use regression trees within gamlss. The great advantage of course comes from the fact GAMLSS models provide a variety of distributions and diagnostics. Note that the function gamlss.tr is not used by the user but it needed for the backfitting.

Usage

\[
\text{tr(formula, method = c("rpart"), control = rpart.control(...), ...)}
\]
\[
gamlss.tr(x, y, w, xeval = \text{NULL}, ...)
\]

Arguments

- formula: A formula containing the explanatory variables i.e. \(~x1+x2+x3.\)
- method: only method "rpart" is supported at the moment
- control: control here is equivalent to rpart.control() function od package rpart
- x: object passing information to the function
- y: the iterative y variable
- w: the iterative weights
- xeval: whether prediction or not is used
- ...: additional arguments

Details

Note that, the gamlss fit maybe would not covered. Also occasionally the gd.tol argument in gamlss has to be increased. The

Value

Note that tr itself does no smoothing; it simply sets things up for the function gamlss() which in turn uses the function additive.fit() for backfitting which in turn uses gamlss.tr() The result is a rpart object.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby based on work of Therneau and Atkison (2015)
References

See Also

See Also as nn

Examples

data(rent)
#--- fitting gamlss+tree Normal
library(rpart)
data(rent)
rg1 <- gamlss(R ~ tr(~A+F1), data=rent, family=NO)
plot(rg1)
plot(getsmo(rg1))
text(getsmo(rg1))
Not run:
fitting Gamma errors
rg2 <- gamlss(R ~ tr(~A+F1), data=rent, family=GA)
plot(rg2)
plot(getsmo(rg2))
text(getsmo(rg2))
#--- fitting also model in the variance
rg3 <- gamlss(R ~ tr(~A+F1), sigma.fo=tr(~F1+A), data=rent,
family=GA, gd.tol=100, c.crit=0.1)
plot(rg3)
plot(getsmo(rg3))
text(getsmo(rg3))
plot(getsmo(rg3, what="sigma"))
text(getsmo(rg3, what="sigma"))
End(Not run)
Index

*Topic regression
 blag, 2
 fitFixedKnots, 4
 fk, 6
 ga, 9
 gamlss.fk, 13
 gamlss.ga, 14
 gamlss.nn, 15
 la, 16
 nn, 18
 penLags, 21
 plot.nnet, 23
 tr, 26

*Topic ts
 blag, 2
 la, 16

ba (ga), 9
blag, 2
fitFixedKnots, 4
fitFreeKnots (fitFixedKnots), 4
fk, 6, 14

ga, 9, 16
gamlss.ba (gamlss.ga), 14
gamlss.fk, 7, 13
gamlss.ga, 14
gamlss.la (la), 16
gamlss.nn, 15
gamlss.tr (tr), 26

la, 16
llag (blag), 2

nn, 18, 25, 27
penLags, 3, 17, 21
plot.nnet, 23
tr, 26
wlag (blag), 2