Package ‘eha’

September 22, 2017

Encoding UTF-8
Version 2.4-6
Date 2017-09-22
Title Event History Analysis
Description Sampling of risk sets in Cox regression, selections in the Lexis diagram, bootstrapping. Parametric proportional hazards fitting with left truncation and right censoring for common families of distributions, piecewise constant hazards, and discrete models. AFT regression for left truncated and right censored data. Binary and Poisson regression for clustered data, fixed and random effects with bootstrapping.
License GPL (>= 2)
LazyData yes
ByteCompile yes
Depends R (>= 3.0.0), survival (>= 2.37-6)
NeedsCompilation yes
Author Göran Broström [aut, cre]
Maintainer Göran Broström <goran.brostrom@umu.se>
Repository CRAN
Date/Publication 2017-09-22 15:13:45 UTC

R topics documented:

 aftreg 3
eaftreg.fit 5
age.window 7
cal.window 8
check.dist 9
check.surv 10
coxreg 11
coxreg.fit 14
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>cro</td>
</tr>
<tr>
<td>EV</td>
</tr>
<tr>
<td>fert</td>
</tr>
<tr>
<td>geome.fit</td>
</tr>
<tr>
<td>ghq</td>
</tr>
<tr>
<td>glmmboot</td>
</tr>
<tr>
<td>glmmbootFit</td>
</tr>
<tr>
<td>glmML</td>
</tr>
<tr>
<td>glmML.fit</td>
</tr>
<tr>
<td>Gompertz</td>
</tr>
<tr>
<td>hweibull</td>
</tr>
<tr>
<td>infants</td>
</tr>
<tr>
<td>join.spells</td>
</tr>
<tr>
<td>Loglogistic</td>
</tr>
<tr>
<td>Lognormal</td>
</tr>
<tr>
<td>logrye</td>
</tr>
<tr>
<td>ltx</td>
</tr>
<tr>
<td>make.communal</td>
</tr>
<tr>
<td>Makeham</td>
</tr>
<tr>
<td>male.mortality</td>
</tr>
<tr>
<td>mlreg</td>
</tr>
<tr>
<td>mort</td>
</tr>
<tr>
<td>oldmort</td>
</tr>
<tr>
<td>pch</td>
</tr>
<tr>
<td>perstat</td>
</tr>
<tr>
<td>phfunc</td>
</tr>
<tr>
<td>phreg</td>
</tr>
<tr>
<td>phreg.fit</td>
</tr>
<tr>
<td>piecewise</td>
</tr>
<tr>
<td>plot.aftreg</td>
</tr>
<tr>
<td>plot.coxreg</td>
</tr>
<tr>
<td>plot.hazdata</td>
</tr>
<tr>
<td>plot.phreg</td>
</tr>
<tr>
<td>plot.Surv</td>
</tr>
<tr>
<td>plot.weibreg</td>
</tr>
<tr>
<td>print.aftreg</td>
</tr>
<tr>
<td>print.coxreg</td>
</tr>
<tr>
<td>print.glmmboot</td>
</tr>
<tr>
<td>print.glmmML</td>
</tr>
<tr>
<td>print.phreg</td>
</tr>
<tr>
<td>print.risksets</td>
</tr>
<tr>
<td>print.weibreg</td>
</tr>
<tr>
<td>risksets</td>
</tr>
<tr>
<td>scania</td>
</tr>
<tr>
<td>summary.aftreg</td>
</tr>
<tr>
<td>summary.coxreg</td>
</tr>
<tr>
<td>summary.glmmboot</td>
</tr>
<tr>
<td>summary.glmmML</td>
</tr>
</tbody>
</table>
Description

The accelerated failure time model with parametric baseline hazard(s). Allows for stratification with different scale and shape in each stratum, and left truncated and right censored data.

Usage

\[\text{aftreg}(\text{formula} = \text{formula}(\text{data}), \text{data} = \text{parent.frame}(), \text{na.action} = \text{getOption("na.action")}, \text{dist} = \text{"weibull"}, \text{init}, \text{shape} = 0, \text{id}, \text{param} = c(\text{"lifeAcc"}, \text{"lifeExp"}), \text{control} = \text{list}(\text{eps} = 1e-08, \text{maxiter} = 20, \text{trace} = \text{FALSE}), \text{singular.ok} = \text{TRUE}, \text{model} = \text{FALSE}, x = \text{FALSE}, y = \text{TRUE}) \]

Arguments

- **formula**: a formula object, with the response on the left of a `~` operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
- **data**: a data.frame in which to interpret the variables named in the formula.
- **na.action**: a missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is `options()$na.action`.
- **dist**: Which distribution? Default is "weibull", with the alternatives "gompertz", "ev", "loglogistic" and "lognormal". A special case like the exponential can be obtained by choosing "weibull" in combination with shape = 1.
- **init**: vector of initial values of the iteration. Default initial value is zero for all variables.
- **shape**: If positive, the shape parameter is fixed at that value. If zero or negative, the shape parameter is estimated. Stratification is now regarded as a meaningful option even if shape is fixed.
id

If there are more than one spell per individual, it is essential to keep spells together by the id argument. This allows for time-varying covariates.

param

Which parametrization should be used? The lifeAcc uses the parametrization given in the vignette, while the lifeExp uses the same as in the survreg function.

control

a list with components eps (convergence criterion), maxiter (maximum number of iterations), and trace (logical, debug output if TRUE). You can change any component without mention the other(s).

singular.ok

Not used.

model

Not used.

x

Return the design matrix in the model object?

y

Return the response in the model object?

details

The parameterization is different from the one used by survreg, when param = "lifeAcc". The result is then true acceleration of time. Then the model is

\[S(t; a, b, \beta, z) = S_0 \left(\frac{t}{\exp(b - z\beta)} \right)^{\exp(a)} \]

where \(S_0 \) is some standardized survivor function. The baseline parameters \(a \) and \(b \) are log shape and log scale, respectively. This is for the default parametrization. With the lifeExp parametrization, some signs are changed:

\[b - z\beta \]

is changed to

\[b + z\beta \]

For the Gompertz distribution, the base parametrization is canonical, a necessity for consistency with the shape/scale paradigm (this is new in 2.3).

value

A list of class c("aftreg", "coxreg") with components

coefficients

Fitted parameter estimates.

var

Covariance matrix of the estimates.

loglik

Vector of length two; first component is the value at the initial parameter values, the second component is the maximized value.

score

The score test statistic (at the initial value).

linear.predictors

The estimated linear predictors.

means

Means of the columns of the design matrix.

w.means

Weighted (against exposure time) means of covariates; weighted relative frequencies of levels of factors.

n

Number of spells in indata (possibly after removal of cases with NA's).

events

Number of events in data.

This function is called by `aftreg`, but it can also be directly called by a user.

Usage

```
aftreg.fit(X, Y, dist, param, strata, offset, init, shape, id, control, pfixed)
```
Arguments

- **X**: The design (covariate) matrix.
- **Y**: A survival object, the response.
- **dist**: Which baseline distribution?
- **param**: Which parametrization?
- **strata**: A stratum variable.
- **offset**: Offset.
- **init**: Initial regression parameter values.
- **shape**: If positive, a fixed value of the shape parameter in the distribution. Otherwise, the shape is estimated.
- **id**: See corresponding argument to `aftreg`.
- **control**: Controls convergence and output.
- **pfixed**: A logical indicating fixed shape parameter(s).

Details

See `aftreg` for more detail.

Value

- **coefficients**: Estimated regression coefficients plus estimated scale and shape coefficients, sorted by strata, if present.
- **df**: Degrees of freedom; No. of regression parameters.
- **var**: Variance-covariance matrix
- **loglik**: Vector of length 2. The first component is the maximized loglihood with only scale and shape in the model, the second the final maximum.
- **conver**: TRUE if convergence
- **fail**: TRUE if failure
- **iter**: Number of Newton-Raphson iterates.
- **n.strata**: The number of strata in the data.

Author(s)

Göran Broström

See Also

- `aftreg`
age.window

Age cut of survival data

Description

For a given age interval, each spell is cut to fit into the given age interval.

Usage

```r
age.window(dat, window, surv=c("enter", "exit", "event"))
```

Arguments

- `dat`: Input data frame. Must contain survival data.
- `window`: Vector of length two; the age interval.
- `surv`: Vector of length three giving the names of the central variables in `dat`.

Details

The `window` must be in the order `begin, end`.

Value

A data frame of the same form as the input data frame, but 'cut' as desired. Intervals exceeding `window[2]` will be given `event = 0`.

Author(s)

Göran Broström

See Also

`cal.window`, `coxreg`, `aftreg`

Examples

```r
dat <- data.frame(enter = 0, exit = 5.731, event = 1, x = 2)
window <- c(2, 5.3)
dat.trim <- age.window(dat, window)
```
cal.window

Calendar time cut of survival data

Description
For a given time interval, each spell is cut so that it fully lies in the given time interval.

Usage
cal.window(dat, window, surv=c("enter", "exit", "event", "birthdate"))

Arguments
dat Input data frame. Must contain survival data and a birth date.
window Vector of length two; the time interval
surv Vector of length four giving the names of the central variables in 'dat'.

Details
The window must be in the order (begin, end).

Value
A data frame of the same form as the input data frame, but 'cut' as desired. Intervals exceeding window[2] will be given event = 0.

Author(s)
Göran Broström

See Also
age.window, coxreg.aftreg

Examples
dat <- data.frame(enter = 0, exit = 5.731, event = 1, birthdate = 1962.505, x = 2)
window <- c(1963, 1965)
dat.trim <- cal.window(dat, window)
check.dist

Graphical goodness-of-fit test

Description

Comparison of the cumulative hazards functions for a semi-parametric and a parametric model.

Usage

```r
check.dist(sp, pp, main = NULL, col = NULL, printLegend = TRUE)
```

Arguments

- `sp`: An object of type "coxreg", typically output from `coxreg`
- `pp`: An object of type "phreg", typically output from `phreg`
- `main`: Header for the plot. Default is distribution and "cumulative hazard function"
- `col`: Line colors. should be `NULL` (black lines) or of length 2
- `printLegend`: Should a legend be printed? Default is `TRUE`.

Details

For the moment only a graphical comparison. The arguments `sp` and `pp` may be swapped.

Value

No return value.

Author(s)

Göran Broström

See Also

`coxreg` and `phreg`.

Examples

```r
data(mort)
oldpar <- par(mfrow = c(2, 2))
fit.cr <- coxreg(Surv(enter, exit, event) ~ ses, data = mort)
fit.w <- phreg(Surv(enter, exit, event) ~ ses, data = mort, dist = "gompertz")
fit.g <- phreg(Surv(enter, exit, event) ~ ses, data = mort, dist = "gompertz")
fit.pch <- phreg(Surv(enter, exit, event) ~ ses, data = mort, dist = "pch", cuts = c(5, 10, 15))
fit.ev <- phreg(Surv(enter, exit, event) ~ ses, data = mort, dist = "ev")
check.dist(fit.cr, fit.w)
```
check.surv

Check the integrity of survival data.

Description
Check that exit occurs after enter, that spells from an individual do not overlap, and that each individual experiences at most one event.

Usage
check.surv(enter, exit, event, id = NULL, eps = 1e-08)

Arguments
enter Left truncation time.
exit Time of exit.
event Indicator of event. Zero means 'no event'.
id Identification of individuals.
eps The smallest allowed spell length or overlap.

Details
Interval lengths must be strictly positive.

Value
A vector of id's for the insane individuals. Of zero length if no errors.

Author(s)
Göran Broström

See Also
join.spells, coxreg, aftreg

Examples
xx <- data.frame(enter = c(0, 1), exit = c(1.5, 3), event = c(0, 1), id = c(1,1))
check.surv(xx$enter, xx$exit, xx$event, xx$id)

Description

Performs Cox regression with some special attractions, especially sampling of risksets and the weird bootstrap.

Usage

```r
coxreg(formula = formula(data), data = parent.frame(), weights, subset, 
t.offset, na.action = getOption("na.action"), init = NULL,
method = c("efron", "breslow", "mppl", "ml"),
control = list(eps = 1e-08, maxiter = 25, trace = FALSE),
singular.ok = TRUE, model = FALSE,
center = TRUE,
x = FALSE, y = TRUE, hazards = TRUE, boot = FALSE, efrac = 0,
geometric = FALSE, rs = NULL,
frailty = NULL, max.survs = NULL)
```

Arguments

- `formula`: a formula object, with the response on the left of a `~` operator, and the terms on the right. The response must be a survival object as returned by the `Surv` function.
- `data`: a data.frame in which to interpret the variables named in the formula.
- `weights`: Case weights; time-fixed or time-varying.
- `subset`: An optional vector specifying a subset of observations to be used in the fitting process.
- `t.offset`: Case offsets; time-varying.
- `na.action`: a missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is `options$na.action`.
- `init`: vector of initial values of the iteration. Default initial value is zero for all variables.
- `method`: Method of treating ties, "efron" (default), "breslow", "mppl" (maximum partial partial likelihood), or "ml" (maximum likelihood).
- `control`: a list with components `eps` (convergence criterion), `maxiter` (maximum number of iterations), and `silent` (logical, controlling amount of output). You can change any component without mention the other(s).
- `singular.ok`: Not used
- `model`: Not used
- `center`: Logical. If `center = TRUE` (default), the baseline hazards are calculated at the means of the covariates and for the reference category for factors, otherwise at the value zero. See Details.
Return the design matrix in the model object?
Return the response in the model object?
Calculate baseline hazards? Default is TRUE.
Risk set?
Number of boot replicates. Defaults to FALSE, no boot samples.
Upper limit of fraction failures in 'mppl'.
If TRUE, forces an 'ml' model with constant riskset probability. Default is FALSE.
Grouping variable for frailty analysis. Not in use yet.
Sampling of risk sets? If given, it should be (the upper limit of) the number of survivors in each risk set.

Details
The default method, efron, and the alternative, breslow, are both the same as in coxph in package survival. The methods mppl and ml are maximum likelihood, discrete-model, based.
If center = TRUE (default), graphs show the "baseline" distribution at the means of (continuous) covariates, and for the reference category in case of factors (avoiding representing "flying pigs"). If center = FALSE the baseline distribution is at the value zero of all covariates. It is usually a good idea to use center = FALSE in combination with "precentering" of covariates, that is, subtracting a reference value, ideally close to the center of the covariate distribution. In that way, the "reference" will be the same for all subsets of the data.

Value
A list of class c("coxreg", "coxph") with components
Fitted parameter estimates.
Covariance matrix of the estimates.
Vector of length two; first component is the value at the initial parameter values, the second component is the maximized value.
The score test statistic (at the initial value).
The estimated linear predictors.
The martingale residuals.
The estimated baseline hazard, calculated at the means of the covariates (rather, columns of the design matrix). Is a list, with one component per stratum. Each component is a matrix with two columns, the first contains risktimes, the second the corresponding hazard atom.
Means of the columns of the design matrix corresponding to covariates, if center = TRUE. Columns corresponding to factor levels give a zero in the corresponding position in means. If center = FALSE, means are all zero.
Weighted (against exposure time) means of covariates; weighted relative frequencies of levels of factors.
n
Number of spells in indata (possibly after removal of cases with NA's).

events
Number of events in data.

terms
Used by extractor functions.

assign
Used by extractor functions.

y
The Surv vector.

isf
Logical vector indicating the covariates that are factors.

covars
The covariates.

ttr
Total Time at Risk.

levels
List of levels of factors.

formula
The calling formula.

bootstrap
The (matrix of) bootstrap replicates, if requested on input. It is up to the user to
do whatever desirable with this sample.

boot.sd
The estimated standard errors of the bootstrap replicates.

call
The call.

method
The method.

convergence
Did the optimization converge?

fail
Did the optimization fail? (Is NULL if not).

Warning
The use of rs is dangerous, see note. It can however speed up computing time considerably for
huge data sets.

Note
This function starts by creating risksets, if no riskset is supplied via rs, with the aid of risksets.
Supplying output from risksets via rs fails if there are any NA's in the data! Note also that
it depends on stratification, so rs contains information about stratification. Giving another strata
variable in the formula is an error. The same is ok, for instance to supply stratum interactions.

Author(s)
Göran Broström

References

See Also
coxph, risksets
Examples

dat <- data.frame(time= c(4, 3, 1, 1, 2, 2, 3),
 status= c(1, 1, 1, 0, 1, 1, 0),
 x= c(0, 2, 1, 1, 0, 0),
 sex= c(0, 0, 0, 1, 1, 1))
coxreg(Surv(time, status) ~ x + strata(sex), data = dat) # stratified model
Same as:
risksets(Surv(dat$time, dat$status), strata = dat$sex)
coxreg(Surv(time, status) ~ x, data = dat, rs = rs) # stratified model

Description

Called by `coxreg`, but a user can call it directly.

Usage

`coxreg.fit(X, Y, rs, weights, t.offset = NULL, strats, offset, init, max.survs,
 method = "breslow", center = TRUE,
 boot = FALSE, efrac = 0, calc.hazards = TRUE,
 calc.martres = TRUE, control, verbose = TRUE)`

Arguments

- **X**: The design matrix.
- **Y**: The survival object.
- **rs**: The risk set composition. If absent, calculated.
- **weights**: Case weights; time-fixed or time-varying.
- **t.offset**: Case offset; time-varying.
- **strats**: The stratum variable. Can be absent.
- **offset**: Offset. Can be absent.
- **init**: Start values. If absent, equal to zero.
- **max.survs**: Sampling of risk sets? If so, gives the maximum number of survivors in each risk set.
- **method**: Either "efron" (default) or "breslow".
- **center**: See `coxreg`.
- **boot**: Number of bootstrap replicates. Defaults to FALSE, no bootstrapping.
- **efrac**: Upper limit of fraction failures in 'mPL'.
calc.hazards Should estimates of baseline hazards be calculated?
calc.martres Should martingale residuals be calculated?
control See coxreg
verbose Should Warnings about convergence be printed?

Details

rs is dangerous to use when NA's are present.

Value

A list with components

coefficients Estimated regression parameters.
var Covariance matrix of estimated coefficients.
loglik First component is value at init, second at maximum.
score Score test statistic, at initial value.
linear.predictors Linear predictors.
residuals Martingale residuals.
hazard Estimated baseline hazard. At value zero of 'design' variables.
means Means of the columns of the design matrix.
bootstrap The bootstrap replicates, if requested on input.
conver TRUE if convergence.
f.conver TRUE if variables converged.
fail TRUE if failure.
iter Number of performed iterations.

Note

It is the user's responsibility to check that indata is sane.

Author(s)

Göran Broström

See Also

coxreg, risksets
Examples

```r
X <- as.matrix(data.frame(
    x = c(0, 2, 1, 4, 1, 0, 3),
    sex = c(1, 0, 0, 0, 1, 1, 1))
time <- c(1, 2, 3, 4, 5, 6, 7)
status <- c(1, 1, 1, 0, 1, 1, 0)
stratum <- rep(1, length(time))

coxreg.fit(X, Surv(time, status), strats = stratum, max.survs = 6,
    control = list(eps=1.e-4, maxiter = 10, trace = FALSE))
```

cro

Creates a minimal representation of a data frame.

Description

Given a data frame with a defined response variable, this function creates a unique representation of the covariates in the data frame, vector (matrix) of responses, and a pointer vector, connecting the responses with the corresponding covariates.

Usage

cro(dat, response=1)

Arguments

dat A data frame
response The column(s) where the response resides.

Details

The rows in the data frame are converted to text strings with `paste` and compared with `match`.

Value

A list with components

- **y** The response.
- **covar** A data frame with unique rows of covariates.
- **keys** Pointers from `y` to `covar`, connecting each response with its covariate vector.

Note

This function is based on suggestions by Anne York and Brian Ripley.

Author(s)

Göran Broström
The EV Distribution

Description

Density, distribution function, quantile function, hazard function, cumulative hazard function, and random generation for the EV distribution with parameters shape and scale.

Usage

dEV(x, shape = 1, scale = 1, log = FALSE)
pEV(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
qEV(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
hEV(x, shape = 1, scale = 1, log = FALSE)
HEV(x, shape = 1, scale = 1, log.p = FALSE)
rEV(n, shape = 1, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.
shape, scale shape and scale parameters, both defaulting to 1.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).

Details

The EV distribution with scale parameter \(a \) and shape parameter \(\sigma \) has hazard function given by

\[
h(x) = \frac{b}{\sigma} (x/\sigma)^{b-1} \exp((x/\sigma)^b)
\]

for \(x \geq 0 \).

Value

dEV gives the density, pEV gives the distribution function, qEV gives the quantile function, hEV gives the hazard function, HEV gives the cumulative hazard function, and rEV generates random deviates. Invalid arguments will result in return value NaN, with a warning.
Description

Birth intervals for married women with at least one birth, 19th northern Sweden

Usage

data(fert)

Format

A data frame with 12169 observations the lengths (in years) of birth intervals for 1859 married women with at least one birth. The first interval (parity = 0) is the interval from marriage to first birth.

- **id** Personal identification number for mother.
- **parity** Time order of birth interval for the present mother. The interval with parity = 0 is the first, from marriage to first birth.
- **age** The age of mother at start of interval.
- **year** The calendar year at start of interval.
- **next.ivl** The length of the coming time interval.
- **event** An indicator for whether the next.ivl ends in a new birth (event = 1) or is right censored (event = 0). Censoring occurs when the woman ends her fertility period within her first marriage (marriage dissolution or reaching the age of 48).
- **prev.ivl** The length of the previous time interval. May be used as explanatory variable in a Cox regression of birth intervals.
- **ses** Socio-economic status, a factor with levels lower, upper, farmer, and unknown.
- **parish** The Skelleftea region consists of three parishes, Jorn, Norsjo, and Skelleftea.

Details

The data set contain clusters of dependent observations defined by mother’s id.

Source

Data is coming from The Demographic Data Base, Umea University, Umea, Sweden.

References

http://www.ddb.umu.se
geome.fit

Examples

```r
data(fert)
fit <- coxreg(Surv(next.ivl, event) ~ ses + prev.ivl, data = fert, subset = (parity == 1))
dropl(fit, test = "Chisq")
```

Description

This function is called from coxreg. A user may call it directly.

Usage

```r
geome.fit(X, Y, rs, strats, offset, init, max.survs, method = "ml", control)
```

Arguments

- **X**: The design matrix
- **Y**: Survival object
- **rs**: risk set produced by risksets
- **strats**: Stratum indicator
- **offset**: Offset
- **init**: Initial values
- **max.survs**: Maximal survivors
- **method**: "ml", always, i.e., this argument is ignored.
- **control**: See coxreg.

Value

See the code.

Note

Nothing special

Author(s)

Göran Broström

References

See coxreg.
Description

Calculates the zeros and weights needed for Gauss-Hermite quadrature.

Usage

ghq(n.points = 1, modified = TRUE)

Arguments

n.points Number of points.
modified Multiply by exp(zeros**2)? Default is TRUE.

Details

Based on a Fortran 66 subroutine written by professor Jianming Jin.

Value

A list with components

zeros The zeros (abscissas).
weights The weights

Note

The code is modified to suit the purpose of glmmML, with the permission of professor Jin.

Author(s)

Jianming Jin, Univ. of Illinois, Urbana-Campaign

References

Gauss-Hermite

See Also

glmmML

Examples

ghq(15, FALSE)
Description

Fits grouped GLMs with fixed group effects. The significance of the grouping is tested by simulation, with a bootstrap approach.

Usage

```r
glmmboot(formula, family = binomial, data, cluster, weights, subset, na.action, offset, start.coef = NULL, control = list(epsilon = 1e-08, maxit = 200, trace = FALSE), boot = 0)
```

Arguments

- `formula`: a symbolic description of the model to be fit. The details of model specification are given below.
- `family`: Currently, the only valid values are `binomial` and `poisson`. The binomial family allows for the `logit` and `cloglog` links.
- `data`: an optional data frame containing the variables in the model. By default the variables are taken from ‘environment(formula)’, typically the environment from which ‘glmmML’ is called.
- `cluster`: Factor indicating which items are correlated.
- `weights`: Case weights.
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `na.action`: See glm.
- `offset`: this can be used to specify an a priori known component to be included in the linear predictor during fitting.
- `start.coef`: starting values for the parameters in the linear predictor. Defaults to zero.
- `control`: Controls the convergence criteria. See `glm.control` for details.
- `boot`: number of bootstrap replicates. If equal to zero, no test of significance of the grouping factor is performed.

Details

The simulation is performed by simulating new response vectors from the fitted probabilities without clustering, and comparing the maximized log likelihoods. The maximizations are performed by profiling out the grouping factor. It is a very fast procedure, compared to `glm`, when the grouping factor has many levels.
Value

The return value is a list, an object of class ‘glmmboot’.

coefficients Estimated regression coefficients
logLik the max log likelihood
cluster.null.deviance Deviance without the clustering
frail The estimated cluster effects
bootLog The logLik values from the bootstrap samples
bootP Bootstrap p value
variance Variance covariance matrix
sd Standard error of regression parameters
boot_rep No. of bootstrap replicates
mixed Logical
deviance Deviance
df.residual Its degrees of freedom
aic AIC
boot Logical
call The function call

Note

There is no overall intercept for this model; each cluster has its own intercept. See frail

Author(s)

Göran Broström

See Also

link{glmmML}, optim, lmer in the package lme4, and glmmPQL in the package MASS.

Examples

Not run:
id <- factor(rep(1:20, rep(5, 20)))
y <- rbinom(100, prob = rep(runif(20), rep(5, 20)), size = 1)
x <- rnorm(100)
dat <- data.frame(y = y, x = x, id = id)
res <- glmmboot(y ~ x, cluster = id, data = dat, boot = 500)
End(Not run)
##system.time(res.glm <- glm(y ~ x + id, family = binomial))
Description

'glmmbootFit' is the workhorse in the function glmmboot. It is suitable to call instead of 'glmmboot', e.g. in simulations.

Usage

```r
glmmbootfit(X, Y, weights = rep(1, NROW(Y)),
start.coef = NULL, cluster = rep(1, length(Y)),
offset = rep(0, length(Y)), family = binomial(),
control = list(epsilon = 1.e-8, maxit = 200, trace = FALSE), boot = 0)
```

Arguments

- **X**: The design matrix (n * p).
- **Y**: The response vector of length n.
- **weights**: Case weights.
- **start.coef**: start values for the parameters in the linear predictor (except the intercept).
- **cluster**: Factor indicating which items are correlated.
- **offset**: this can be used to specify an a priori known component to be included in the linear predictor during fitting.
- **family**: Currently, the only valid values are binomial and poisson. The binomial family allows for the logit and cloglog links.
- **control**: A list. Controls the convergence criteria. See `glm.control` for details.
- **boot**: number of bootstrap replicates. If equal to zero, no test of significance of the grouping factor is performed.

Value

A list with components

- **coefficients**: Estimated regression coefficients (note: No intercept).
- **logLik**: The maximised log likelihood.
- **cluster.null.deviance**: deviance from a model without cluster.
- **frail**: The estimated cluster effects.
- **bootlog**: The maximised bootstrap log likelihood values. A vector of length boot.
- **bootP**: The bootstrap p value.
- **variance**: The variance-covariance matrix of the fixed effects (no intercept).
- **sd**: The standard errors of the coefficients.
- **boot_rep**: The number of bootstrap replicates.
Note

A profiling approach is used to estimate the cluster effects.

Author(s)

Göran Broström

See Also

glmmboot

Examples

```r
## Not run
x <- matrix(rnorm(1000), ncol = 1)
id <- rep(1:100, rep(10, 100))
y <- rbinom(1000, size = 1, prob = 0.4)
fit <- glmmbootFit(x, y, cluster = id, boot = 200)
summary(fit)
## End(Not run)
## Should show no effects.
```

glmmML

Generalized Linear Models with random intercept

Description

Fits GLMs with random intercept by Maximum Likelihood and numerical integration via Gauss-Hermite quadrature.

Usage

```r
glmmML(formula, family = binomial, data, cluster, weights, cluster.weights, subset, na.action, offset, prior = c("gaussian", "logistic", "cauchy", "gamma"), start.coef = NULL, start.sigma = NULL, fix.sigma = FALSE, x = FALSE, control = list(epsilon = 1e-08, maxit = 200, trace = FALSE), method = c("Laplace", "ghq"), n.points = 8, boot = 0)
```

Arguments

- **formula**: a symbolic description of the model to be fit. The details of model specification are given below.
- **family**: Currently, the only valid values are binomial and poisson. The binomial family allows for the logit and cloglog links.
- **data**: an optional data frame containing the variables in the model. By default the variables are taken from `environment(formula)`, typically the environment from which `glmmML` is called.
glmmML

cluster Factor indicating which items are correlated.

weights Case weights. Defaults to one.

cluster.weights Cluster weights. Defaults to one.

subset An optional vector specifying a subset of observations to be used in the fitting process.

na.action See *glm*.

start.coef Starting values for the parameters in the linear predictor. Defaults to zero.

start.sigma Starting value for the mixing standard deviation. Defaults to 0.5.

fix.sigma Should sigma be fixed at start.sigma?

x If TRUE, the design matrix is returned (as x).

offset This can be used to specify an a priori known component to be included in the linear predictor during fitting.

prior Which “prior” distribution (for the random effects)? Possible choices are “gaussian” (default), “logistic”, and “cauchy”. For the poisson family, it is possible to use the conjugate "gamma" prior, which avoids numerical integration.

control Controls the convergence criteria. See *glm.control* for details.

method There are two choices "Laplace" (default) and "ghq" (Gauss-Hermite).

n.points Number of points in the Gauss-Hermite quadrature. If n.points == 1, the Gauss-Hermite is the same as Laplace approximation. If method is set to "Laplace", this parameter is ignored.

boot Do you want a bootstrap estimate of cluster effect? The default is No (boot = \(0\)). If you want to say yes, enter a positive integer here. It should be equal to the number of bootstrap samples you want to draw. A recommended absolute minimum value is boot = 2000.

Details

The integrals in the log likelihood function are evaluated by the Laplace approximation (default) or Gauss-Hermite quadrature. The latter is now fully adaptive; however, only approximate estimates of variances are available for the Gauss-Hermite (n.points > 1) method.

For the binomial families, the response can be a two-column matrix, see the help page for glm for details.

Value

The return value is a list, an object of class ‘*glmmML*’. The components are:

boot No. of boot replicates

converged Logical

coefficients Estimated regression coefficients

coef.sd Their standard errors

sigma The estimated random effects’ standard deviation
sigma.sd Its standard error
variance The estimated variance-covariance matrix. The last column/row corresponds to the standard deviation of the random effects (sigma)
aic AIC
bootP Bootstrap p value from testing the null hypothesis of no random effect (sigma = 0)
deviance Deviance
mixed Logical
df.residual Degrees of freedom
cluster.null.deviance Deviance from a glm with no clustering. Subtracting deviance gives a test statistic for the null hypothesis of no clustering. Its asymptotic distribution is a symmetric mixture a constant at zero and a chi-squared distribution with one df. The printed p-value is based on this.
cluster.null.df Its degrees of freedom
posterior.modes Estimated posterior modes of the random effects
terms The terms object
info From hessian inversion. Should be 0. If not, no variances could be estimated. You could try fixing sigma at the estimated value and rerun.
prior Which prior was used?
call The function call
x The design matrix if asked for, otherwise not present

Note

The optimization may not converge with the default value of start.sigma. In that case, try different start values for sigma. If still no convergence, consider the possibility to fix the value of sigma at several values and study the profile likelihood.

Author(s)

Göran Broström

References

See Also

glmmboot, glm, optim, lmer in the package lme4 and glmmPQL in the package MASS.
Examples

```r
id <- factor(rep(1:20, rep(5, 20)))
y <- rbinom(100, prob = rep(runif(20), rep(5, 20)), size = 1)
x <- rnorm(100)
dat <- data.frame(y = y, x = x, id = id)
glmmML(y ~ x, data = dat, cluster = id)
```

Description

This function is called by `glmmML`, but it can also be called directly by the user.

Usage

```r
glmmMLfit(x, y, weights = rep(1, NROW(y)), cluster.weights = rep(1, NROW(y)),
          start.coef = NULL, start.sigma = NULL,
          fix.sigma = FALSE,
          cluster = NULL, offset = rep(0, nobs), family = binomial(),
          method = 1, n.points = 1,
          control = list(epsilon = 1.e-8, maxit = 200, trace = FALSE),
          intercept = TRUE, boot = 0, prior = 0)
```

Arguments

- `x`: Design matrix of covariates.
- `y`: Response vector. Or two-column matrix.
- `weights`: Case weights. Defaults to one.
- `cluster.weights`: Cluster weights. Defaults to one.
- `start.coef`: Starting values for the coefficients.
- `start.sigma`: Starting value for the mixing standard deviation.
- `fix.sigma`: Should sigma be fixed at start.sigma?
- `cluster`: The clustering variable.
- `offset`: The offset in the model.
- `family`: Family of distributions. Defaults to binomial with logit link. Other possibilities are binomial with cloglog link and poisson with log link.
- `method`: Laplace (1) or Gauss-hermite (0)?
- `n.points`: Number of points in the Gauss-Hermite quadrature. Default is n.points = 1, which is equivalent to Laplace approximation.
- `control`: Control of the iterations. See `glm.control`.
- `intercept`: Logical. If TRUE, an intercept is fitted.
- `boot`: Integer. If > 0, bootstrapping with boot replicates.
- `prior`: Which prior distribution? 0 for "gaussian", 1 for "logistic", 2 for "cauchy".
Details
In the optimisation, "vmmin" (in C code) is used.

Value
A list. For details, see the code, and glmmML.

Author(s)
Göran Broström

References
Broström (2003)

See Also
glmmML, glmmpQL in the package MASS, and lmer in the package lme4.

Examples
\[
x <- cbind(rep(1, 14), rnorm(14))
y <- rbinom(14, prob = 0.5, size = 1)
id <- rep(1:7, 2)
\]
\[
glmmML.fit(x, y, cluster = id)
\]

Gompertz

The Gompertz Distribution

Description
Density, distribution function, quantile function, hazard function, cumulative hazard function, and random generation for the Gompertz distribution with parameters shape and scale.

Usage
dgompertz(x, shape = 1, scale = 1, log = FALSE, param = c("default", "canonical"))
pgompertz(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE, param = c("default", "canonical"))
qgompertz(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE, param = c("default", "canonical"))
hgompertz(x, shape = 1, scale = 1, log = FALSE, param = c("default", "canonical"))
Hgompertz(x, shape = 1, scale = 1, log.p = FALSE, param = c("default", "canonical"))
rgompertz(n, shape = 1, scale = 1, param = c("default", "canonical"))
Arguments

- **x**, **q**: vector of quantiles.
- **p**: vector of probabilities.
- **n**: number of observations. If `length(n) > 1`, the length is taken to be the number required.
- **shape**, **scale**: Parameters: shape, defaulting to 1, and scale, defaulting to 1.
- **log**, **log.p**: logical; if TRUE, probabilities `p` are given as `log(p)`.
- **lower.tail**: logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).
- **param**: See 'details' below.

Details

The Gompertz distribution with shape parameter \(a \) and scale parameter \(\sigma \) has hazard given by

\[
h(x) = a \exp(x/\sigma)
\]

for \(x \geq 0 \). If \(\text{param} = \"canonical\" \), then \(a \rightarrow a/b \), so that \(b \) is a true scale parameter (for any fixed \(a \)), and \(b \) is an 'AFT parameter'.

Value

dgompertz gives the density, pgompertz gives the distribution function, qgompertz gives the quantile function, hgompertz gives the hazard function, Hgompertz gives the cumulative hazard function, and rgompertz generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

hweibull

The (Cumulative) Hazard Function of a Weibull Distribution

Description

`hweibull` calculates the hazard function of a Weibull distribution, and `Hweibull` calculates the corresponding cumulative hazard function.

Usage

- `hweibull(x, shape, scale = 1, log = FALSE)`
- `Hweibull(x, shape, scale = 1, log = FALSE)`

Arguments

- **x**: Vector of quantiles.
- **shape**: The shape parameter.
- **scale**: The scale parameter, defaults to 1.
- **log**: logical; if TRUE, the log of the hazard function is given.
Details

See dweibull.

Value

The (cumulative) hazard function, evaluated at x.

Author(s)

Göran Broström

See Also

pweibull

Examples

hweibull(3, 2, 1)
dweibull(3, 2, 1) / pweibull(3, 2, 1, lower.tail = FALSE)
hweibull(3, 2, 1)
-pweibull(3, 2, 1, log.p = TRUE, lower.tail = FALSE)

infants
Infant mortality and maternal death, Sweden 1821–1894.

Description

Matched data on infant mortality, from seven parishes in Sweden, 1821–1894.

Usage

data(infants)

Format

A data frame with 80 rows and five variables.

stratum Triplet No. Each triplet consist of one infant whose mother died (a case), and two controls, i.e., infants whose mother did not die. Matched on covariates below.
enter Age (in days) of case when its mother died.
exit Age (in days) at death or right censoring (at age 365 days).
event Follow-up ends with death (1) or right censoring (0).
mother dead for cases, alive for controls.
age Mother's age at infant's birth.
sex The infant's sex.
parish Birth parish, either Nedertornea or not Nedertornea.
civst Civil status of mother, married or unmarried.

ses Socio-economic status of mother, either farmer or not farmer.

year Year of birth of the infant.

Details

From 5641 first-born in seven Swedish parishes 1820-1895, from Fleninge in the very south to Nedertorneå in the very north, those whose mother died during their first year of life were selected, in all 35 infants. To each of them, two controls were selected by matching on the given covariates.

Source

Data originate from The Demographic Data Base, Umeå University, Umeå, Sweden, http://www.ddb.umu.se.

References

Examples

data(infants)
fit <- coxreg(Surv(enter, exit, event) ~ strata(stratum) + mother, data = infants)
fit
fit.w <- phreg(Surv(enter, exit, event) ~ mother + parish + ses, data = infants)
fit.w ### Weibull proportional hazards model.

join.spells Straighten up a survival data frame

Description

Unnecessary cut spells are glued together, overlapping spells are "polished", etc.

Usage

join.spells(dat, strict = FALSE, eps = 1.e-8)

Arguments

dat A data frame with names enter, exit, event, id.

strict If TRUE, nothing is changed if errors in spells (non-positive length, overlapping intervals, etc.) are detected. Otherwise (the default), bad spells are removed, with "earlier life" having higher priority.

eps Tolerance for equality of two event times. Should be kept small.
Details

In case of overlapping intervals (i.e., a data error), the appropriate id’s are returned if strict is TRUE.

Value

A data frame with the same variables as the input, but individual spells are joined, if possible (identical covariate values, and adjacent time intervals).

Author(s)

Göran Broström

References

See Also

`coxreg`, `aftreg`, `check.surv`

Loglogistic

The Loglogistic Distribution

Description

Density, distribution function, quantile function, hazard function, cumulative hazard function, and random generation for the Loglogistic distribution with parameters shape and scale.

Usage

```r
dllogis(x, shape = 1, scale = 1, log = FALSE)
pllogis(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
qllogis(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
hllogis(x, shape = 1, scale = 1, prop = 1, log = FALSE)
Hllogis(x, shape = 1, scale = 1, prop = 1, log.p = FALSE)
rlllogis(n, shape = 1, scale = 1)
```

Arguments

- `x`, `q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is taken to be the number required.
- `shape`, `scale` shape and scale parameters, both defaulting to 1.
prop A 'proportional hazards' parameter, for now only available for \texttt{hllogis} and \texttt{hllogis}. See Details.

\code{log, log.p} logical; if \texttt{TRUE}, probabilities \(p\) are given as \(\log(p)\).

\code{lower.tail} logical; if \texttt{TRUE} (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X > x]\).

Details

The Loglogistic distribution with shape parameter \(a\) and scale parameter \(\sigma\) has density given by

\[
f(x) = \left(\frac{a}{\sigma}\right) \left(\frac{x}{\sigma}\right)^{a-1} \left(1 + \left(\frac{x}{\sigma}\right)^a\right)^{-2}
\]

for \(x \geq 0\). The cumulative distribution function is \(F(x) = 1 - \frac{1}{1 + (x/\sigma)^a}\) on \(x \geq 0\).

From eha version 2.3-0, the loglogistic distribution is extended to a three-parameter family of distributions. The third parameter, 'prop', is a 'proportional hazards' parameter, simply multiplying the hazard function by its value. For now only implemented in the hazard and cumulative hazards functions, but it will be introduced fully soon. Probably as a class of distributions with a new name.

See also \texttt{phreg}.

Value

\texttt{dllogis} gives the density, \texttt{pllogis} gives the distribution function, \texttt{qllogis} gives the quantile function, \texttt{hllogis} gives the hazard function, \texttt{hllogis} gives the cumulative hazard function, and \texttt{rllogis} generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

See Also

\texttt{phreg}, \texttt{aftreg}.

The Lognormal Distribution

Description

Hazard function and cumulative hazard function for the Lognormal distribution with parameters shape and scale.

Usage

\begin{verbatim}
 hlnorm(x, meanlog = 0, sdlog = 1,
 shape = 1 / sdlog, scale = exp(meanlog), prop = 1, log = FALSE)
 Hlnorm(x, meanlog = 0, sdlog = 1,
 shape = 1 / sdlog, scale = exp(meanlog), prop = 1, log.p = FALSE)
\end{verbatim}
Arguments

- **x**: vector of quantiles.
- **meanlog, sdlog**: Mean and standard deviation in the distribution of the logarithm of a lognormal random variable.
- **shape, scale**: shape and scale parameters, both defaulting to 1.
- **prop**: A 'proportional hazards' parameter, see Details.
- **log, log.p**: logical; if TRUE, probabilities p are given as log(p).

Details

This is a complement to the Lognormal distribution, see **Lognormal** for further details.

From eha version 2.3-0, the lognormal distribution is extended to a three-parameter family of distributions. The third parameter, 'prop', is a 'proportional hazards' parameter, simply multiplying the hazard function by its value. For now only implemented in the hazard and cumulative hazards functions, but it will be introduced fully soon. Probably as a class of distributions with a new name.

Value

- **hlnorm** gives the hazard function, and **hlnorm** gives the cumulative hazard function.

Invalid arguments will result in return value **NaN**, with a warning.

See Also

- **phreg**, **aftreg**.

logrye

Rye prices, Scania, southern Sweden, 1801-1894.

Description

The data consists of yearly rye prices from 1801 to 1894. Logged and detrended, so the time series is supposed to measure short term fluctuations in rye prices.

Usage

- `data(scania)`

Format

A data frame with 94 observations in two columns on the following 2 variables.

- **year**: The year the price is recorded.
- **foodprices**: Detrended log rye prices.
Details
The Scanian area in southern Sweden was during the 19th century a mainly rural area.

Source
The Scanian Economic Demographic Database.

References

Examples
data(logrye)
summary(logrye)

\textit{\texttt{ltx}} \hfill \textit{\textit{LaTeX} printing of \texttt{coxreg} results.}

Description
This (generic) function prints the \LaTeX{} code of the results of a fit from \texttt{coxreg}, \texttt{phreg}, or \texttt{aftreg}, similar to what \texttt{xtable} does for fits from other functions.

Usage
\begin{verbatim}
\texttt{ltx(x, caption = NULL, label = NULL, dr = NULL, digits = max(options()$digits - 4, 3), ...)}
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{x} \hfill The output from a call to \texttt{coxreg}, \texttt{coxreg}, or \texttt{aftreg}
\item \texttt{caption} \hfill A suitable caption for the table.
\item \texttt{label} \hfill A label used in the \LaTeX{} code.
\item \texttt{dr} \hfill Output from a \texttt{drop1} call.
\item \texttt{digits} \hfill Number of digits to be printed.
\item [...] \hfill Not used.
\end{itemize}

Details
The result is a printout which is (much) nicer than the standard printed output from \texttt{glm} and friends.

Value
\LaTeX{} code version of the results from a run with \texttt{coxreg}, \texttt{phreg}, or \texttt{aftreg}.

Note
There is no method in xtable for coxreg.

Author(s)
Göran Broström.

See Also
xtable, coxreg

Examples

```r
data(oldmort)
fit <- coxreg(Surv(enter, exit, event) ~ civ + sex, data = oldmort)
dr <- drop1(fit, test = "Chisq")
ltx(fit, dr = dr, caption = "A test example.", label = "tab:test1")
```

Description
Given an ordinary data frame suitable for survival analysis, and a data frame with "communal" time series, this function includes the communal covariates as fixed, by the "cutting spells" method.

Usage

```r
make.communal(dat, com.dat, communal = TRUE, start, period = 1, lag = 0,
 surv=c("enter", "exit", "event", "birthdate"), tol=1e-04, fortran=TRUE)
```

Arguments

- **dat**: A data frame containing interval specified survival data and covariates, of which one must give a "birth date", the connection between duration and calendat time.
- **com.dat**: Data frame with communal covariates. They must have the same start year and periodicity, given by com.ins.
- **communal**: Boolean; if TRUE, then it is a true communal (default), otherwise a fixed. The first component is the first year (start date in decimal form), and the second component is the period length. The third is lag and the fourth is scale.
- **start**: Start date in decimal form.
- **period**: Period length. Defaults to one.
- **lag**: The lag of the effect. Defaults to zero.
- **surv**: Character vector of length 4 giving the names of interval start, interval end, event indicator, birth date, in that order. These names must correspond to names in dat.
tol

Largest length of an interval considered to be of zero length. The cutting sometimes produces zero length intervals, which we want to discard.

fortran

If TRUE, then a Fortran implementation of the function is used. This is the default. This possibility is only for debugging purposes. You should of course get identical results with the two methods.

Details

The main purpose of this function is to prepare a data file for use with `coxreg`, `aftreg`, and `coxph`.

Value

The return value is a data frame with the same variables as in the combination of `dat` and `com.dat`. Therefore it is an error to have common name(s) in the two data frames.

Note

Not very vigorously tested.

Author(s)

Göran Broström

See Also

`coxreg`, `aftreg`, `coxph`, `cal.window`

Examples

dat <- data.frame(enter = 0, exit = 5.731, event = 1,
birthdate = 1962.505, x = 2)
Birth date: July 2, 1962 (approximately).
com.dat <- data.frame(price = c(12, 3, -5, 6, -8, -9, 1, 7))
dat.com <- make.communal(dat, com.dat, start = 1962.000)

Makeham

The Gompertz-Makeham Distribution

Description

Density, distribution function, quantile function, hazard function, cumulative hazard function, and random generation for the Gompertz-Makeham distribution with parameters `shape1`, `shape2` and `scale`.
Usage

dmakeham(x, shape = c(1, 1), scale = 1, log = FALSE)
pmakeham(q, shape = c(1, 1), scale = 1, lower.tail = TRUE, log.p = FALSE)
qmakeham(p, shape = c(1, 1), scale = 1, lower.tail = TRUE, log.p = FALSE)
hmakeham(x, shape = c(1, 1), scale = 1, log = FALSE)
Hmakeham(x, shape = c(1, 1), scale = 1, log.p = FALSE)
rmakeham(n, shape = c(1, 1), scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.
shape, scale Parameters: shape, a vector of length 2, defaulting to c(1, 1), and scale, defaulting to 1.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).

Details

The Gompertz-Makeham distribution with shape parameters \(a_1 \) and \(a_2 \) and scale parameter \(\sigma \) has hazard function given by

\[
h(x) = a_2 + a_1 \exp(x/\sigma)
\]

for \(x \geq 0 \).

Value

dmakeham gives the density, pmakeham gives the distribution function, qmakeham gives the quantile function, but is not yet implemented, hmakeham gives the hazard function, Hmakeham gives the cumulative hazard function, and rmakeham generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

male.mortality Male mortality in ages 40-60, nineteenth century

Description

Males born in the years 1800-1820 and surviving at least 40 years in the parish Skellefteå in northern Sweden are followed from their fortieth birthday until death or the sixtieth birthday, whichever comes first.

Usage

data(male.mortality)
mlreg

Format

A data frame with 2058 observations on the following 6 variables.

id Personal identification number.
enter Start of duration. Measured in years since the fortieth birthday.
exit End of duration. Measured in years since the fortieth birthday.
event a logical vector indicating death at end of interval.
birthdate The birthdate in decimal form.
SES Socio-economic status, a factor with levels lower, upper

Details

The interesting explanatory covariate is ses (socioeconomic status), which is a time-varying co-
variate. This explains why several individuals are represented by more than one record each. Left
truncation and right censoring are introduced this way.

Note

This data set is also known, and accessible, as mort.

Source

Data is coming from The Demographic Data Base, Umeå University, Umeå, Sweden.

References

http://www.ddb.umu.se

Examples

data(male.mortality)
coxreg(Surv(enter, exit, event) ~ ses, data = male.mortality)

mlreg ML proportional hazards regression

Description

Maximum Likelihood estimation of proportional hazards models. Is deprecated, use coxreg instead.

Usage

mlreg(formula = formula(data), data = parent.frame(),
na.action =getOption("na.action"), init=NULL, method = c("ML", "MPPL"),
control = list(eps = 1e-08, maxiter = 10, n.points = 12, trace = FALSE),
singular.ok = TRUE, model = FALSE, center = TRUE,
x = FALSE, y = TRUE, boot = FALSE, geometric = FALSE,
rs=NULL, frailty = NULL, max.survs=NULL)
Arguments

formula a formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.

data a data.frame in which to interpret the variables named in the formula.

na.action a missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is options(na.action).

init vector of initial values of the iteration. Default initial value is zero for all variables.

method Method of treating ties, "ML", the default, means pure maximum likelihood, i.e., data are treated as discrete. The choice "MPPL" implies that risk sets with no tied events are treated as in ordinary Cox regression. This is a cameleont that adapts to data, part discrete and part continuous.

control a list with components eps (convergence criterion), maxiter (maximum number of iterations), and silent (logical, controlling amount of output). You can change any component without mention the other(s).

singular.ok Not used.

model Not used.

center Should covariates be centered? Default is TRUE.

x Return the design matrix in the model object?

y return the response in the model object?

boot No. of bootstrap replicates. Defaults to FALSE, i.e., no bootstrapping.

gerometric If TRUE, the intensity is assumed constant within strata.

rs Risk set? If present, speeds up calculations considerably.

frailty A grouping variable for frailty analysis. Full name is needed.

max.survs Sampling of risk sets?

Details

Method \texttt{ml} performs a true discrete analysis, i.e., one parameter per observed event time. Method \texttt{mppl} is a compromise between the discrete and continuous time approaches; one parameter per observed event time with multiple events. With no ties in data, an ordinary Cox regression (as with \texttt{coxreg}) is performed.

Value

A list of class \texttt{c("mlreg", "coxreg", "coxph")} with components

coefficients Fitted parameter estimates.

var Covariance matrix of the estimates.

loglik Vector of length two; first component is the value at the initial parameter values, the second componet is the maximized value.

score The score test statistic (at the initial value).
linear.predictors The estimated linear predictors.
residuals The martingale residuals.
hazard The estimated baseline hazard.
means Means of the columns of the design matrix.
wmeans Weighted (against exposure time) means of covariates; weighted relative frequencies of levels of factors.
n Number of spells in indata (possibly after removal of cases with NA's).
events Number of events in data.
terms Used by extractor functions.
assign Used by extractor functions.
wald.test The WALT test statistic (at the initial value).
y The Surv vector.
isF Logical vector indicating the covariates that are factors.
covars The covariates.
ttr Total Time at Risk.
levels List of levels of factors.
formula The calling formula.
call The call.
bootstrap The bootstrap sample, if requested on input.
sigma Present if a frailty model is fitted. Equals the estimated frailty standard deviation.
sigma.sd The standard error of the estimated frailty standard deviation.
method The method.
convergence Did the optimization converge?
fail Did the optimization fail? (Is NULL if not).

Warning
The use of rs is dangerous, see note above. It can however speed up computing time.

Note
This function starts by creating risksets, if no riskset is supplied via rs, with the aid of risksets. This latter mechanism fails if there are any NA's in the data! Note also that it depends on stratification, so rs contains information about stratification. Giving another strata variable in the formula is an error. The same is ok, for instance to supply stratum interactions.

Note further that mlreg is deprecated. coxreg should be used instead.

Author(s)
Göran Broström
References

See Also

coxreg, risksets

Examples

dat <- data.frame(time = c(4, 3, 1, 1, 2, 3),
 status=c(1,1,1,0,1,1,0),
 x= c(0, 2,1,1,1,0,0),
 sex= c(0, 0,0,0,1,1,1))
mlreg(Surv(time, status) ~ x + strata(sex), data = dat) # stratified model
Same as:
rs <- risksets(Surv(dat$time, dat$status), strata = dat$sex)
mlreg(Surv(time, status) ~ x, data = dat, rs = rs) # stratified model

mort Male mortality in ages 40-60, nineteenth century

Description

Males born in the years 1800-1820 and surviving at least 40 years in the parish Skellefteå in northern Sweden are followed from their fortieth birthday until death or the sixtieth birthday, whichever comes first.

Usage

data(mort)

Format

A data frame with 2058 observations on the following 6 variables.

id Personal identification number.
enter Start of duration. Measured in years since the fortieth birthday.
exit End of duration. Measured in years since the fortieth birthday.
event a logical vector indicating death at end of interval.
birthdate The birthdate in decimal form.
ses Socio-economic status, a factor with levels lower, upper
Details

The interesting explanatory covariate is ses (socioeconomic status), which is a time-varying covariate. This explains why several individuals are represented by more than one record each. Left truncation and right censoring are introduced this way.

Note

This data set is also known, and accessible, as male.mortality

Source

Data is coming from The Demographic Data Base, Umea University, Umeå, Sweden.

References

http://www.ddb.umu.se

Examples

data(mort)
coxreg(Surv(enter, exit, event) ~ ses, data = mort)

oldmort Old age mortality, Sundsvall, Sweden, 1860-1880.

Description

The data consists of old age life histories from 1 January 1860 to 31 December 1880, 21 years. Only (parts of) life histories above age 60 is considered.

Usage

data(oldmort)

Format

A data frame with 6508 observations from 4603 persons on the following 13 variables.

- id Identification number.
- enter Start age for the interval.
- exit Stop age for the interval.
- event Indicator of death; equals TRUE if the person died at the end of the interval, FALSE otherwise.
- birthdate Birthdate as a real number (i.e., "1765-06-27" is 1765.490).
- m.id Mother’s identification number.
- f.id Father’s identification number.
- sex Gender, a factor with levels male female
Civil status, a factor with levels unmarried married widow
Socio-economic status at age 50, a factor with levels middle unknown upper farmer lower
Birthplace a factor with levels parish region remote
Infant mortality rate at birth in the region of birth
Subregion of Sundsvall, a factor with levels town industry rural

Details
The Sundsvall area in mid-Sweden was during the 19th century a fast growing forest industry. At
the end of the century, it was one of the largest sawmill area in Europe. The town Sundsvall is fast
growing part of the region and center for the commerce.

Source
The Demographic Data Base, Umeå University, Sweden.

References
Edvinsson, S. (2000). The Demographic Data Base at Umeå University: A resource for historical
studies. In Hall, McKaa, and Thorvaldsen (eds), "Handbook of International Historical Microdata
for Population Research", Minnesota Population Center, Minneapolis.

Examples
```
data(oldmort)
summary(oldmort)
## maybe str(oldmort); plot(oldmort) ...
```

pch

The Piecewise constant hazards (Pch) distribution

Description
Density, distribution function, quantile function, hazard function, cumulative hazard function, and
random generation for the pch distribution with parameters cuts and levels.

Usage
```
dpch(x, cuts, levels, log = FALSE)
ppch(q, cuts, levels, lower.tail = TRUE, log.p = FALSE)
qpch(p, cuts, levels, lower.tail = TRUE, log.p = FALSE)
hpch(x, cuts, levels, log = FALSE)
Hpch(x, cuts, levels, log.p = FALSE)
rpch(n, cuts, levels)
```
Arguments

- **x**, **q**: vector of quantiles.
- **p**: vector of probabilities.
- **n**: number of observations. If length(n) > 1, the length is taken to be the number required.
- **cuts**, **levels**: cuts define the intervals where the hazard function is constant. The cuts must be strictly positive and finite. levels are the interval-constant values, one more than the cuts.
- **log**, **log.p**: logical; if TRUE, probabilities p are given as log(p).
- **lower.tail**: logical; if TRUE (default), probabilities are $P(X \leq x)$, otherwise, $P(X > x)$.

Details

The Pch distribution is defined by the cuts and the levels so that the hazard function is constant on intervals.

Value

dpch gives the density, ppch gives the distribution function, qpch gives the quantile function, hpch gives the hazard function, Hpch gives the cumulative hazard function, and rpch generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

perstat

Period statistics

Description

Calculates occurrence / exposure rates for time periods given by **period** and for ages given by **age**.

Usage

```r
perstat(surv, period, age = c(0, 200))
```

Arguments

- **surv**: An (extended) surv object (4 columns with enter, exit, event, birthdate)
- **period**: A vector of dates (in decimal form)
- **age**: A vector of length 2; lowest and highest age

Value

A list with components

- **events**: No. of events in each time period.
- **exposure**: Exposure times in each period.
- **intensity**: events / exposure
phfunc

Loglihood function of a proportional hazards regression

Author(s)

Göran Broström

See Also

`piecewise`

Description

Calculates minus the log likelihood function and its first and second order derivatives for data from a Weibull regression model.

Usage

```r
phfunc(beta = NULL, lambda, p, X = NULL, Y, offset = rep(0, length(Y)), ord = 2, pfixed = FALSE, dist = "weibull")
```

Arguments

- `beta`: Regression parameters
- `lambda`: The scale parameter
- `p`: The shape parameter
- `X`: The design (covariate) matrix.
- `Y`: The response, a survival object.
- `offset`: Offset.
- `ord`: `ord = 0` means only loglihood, 1 means score vector as well, 2 loglihood, score and hessian.
- `pfixed`: Logical, if TRUE the shape parameter is regarded as a known constant in the calculations, meaning that it is not cosidered in the partial derivatives.
- `dist`: Which distribution? The default is "weibull", with the alternatives "loglogistic" and "lognormal".

Details

Note that the function returns log likelihood, score vector and minus hessian, i.e. the observed information. The model is

Value

A list with components

- `f`: The log likelihood. Present if `ord >= 0`
- `fp`: The score vector. Present if `ord >= 1`
- `fpp`: The negative of the hessian. Present if `ord >= 2`
Parametric Proportional Hazards Regression

Description

Proportional hazards model with parametric baseline hazard(s). Allows for stratification with different scale and shape in each stratum, and left truncated and right censored data.

Usage

```r
phreg(formula = formula(data), data = parent.frame(),
na.action = getOption("na.action"), dist = "weibull", cuts = NULL,
init, shape = 0, param = c("canonical", "rate"),
control = list(eps = 1e-08, maxiter = 20, trace = FALSE),
singular.ok = TRUE, model = FALSE, x = FALSE, y = TRUE, center = TRUE)
```

Arguments

- `formula`: a formula object, with the response on the left of a ~ operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
- `data`: a data.frame in which to interpret the variables named in the formula.
- `na.action`: a missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is `getOption("na.action")`.
- `dist`: Which distribution? Default is "weibull", with the alternatives "ev" (Extreme value), "gompertz", "pch" (piecewise constant hazards function), "loglogistic" and "lognormal". A special case like the exponential can be obtained by choosing "weibull" in combination with `shape = 1`, or "pch" without `cuts`.
- `cuts`: Only used with `dist = "pch"`. Specifies the points in time where the hazard function jumps. If omitted, an exponential model is fitted.
- `init`: vector of initial values of the iteration. Default initial value is zero for all variables.
- `shape`: If positive, the shape parameter is fixed at that value (in each stratum). If zero or negative, the shape parameter is estimated. If more than one stratum is present in data, each stratum gets its own estimate.

Author(s)

Göran Broström

See Also

`phreg`
param

Applies only to the Gompertz distribution: "canonical" is defined in the description of the Gompertz distribution; "rate" transforms scale to 1/log(scale), giving the same parametrization as in Stata and SAS. The latter thus allows for a negative rate, or a "cure" (Gompertz) model. The default is "canonical"; if this results in extremely large scale and/or shape estimates, consider trying "rate".

control

A list with components eps (convergence criterion), maxiter (maximum number of iterations), and silent (logical, controlling amount of output). You can change any component without mention the other(s).

singular.ok

Not used.

model

Not used.

x

Return the design matrix in the model object?

y

Return the response in the model object?

center

Logical, only affects plotting. Results are reported as is, without centering. See Details.

Details

The parameterization is the same as in coxreg and coxph, but different from the one used by survreg (which is not a proportional hazards modelling function). The model is

\[S(t; a, b, \beta, z) = S_0((t/b)^a) \exp((z - \text{mean}(z)) \beta) \]

where \(S_0 \) is some standardized survivor function.

If center = TRUE (default), graphs show the "baseline" distribution at the means of (continuous) covariates, and for the reference category in case of factors (avoiding representing "flying pigs"). If center = FALSE the baseline distribution is at the value zero of all covariates. It is usually a good idea to use center = FALSE in combination with "precentering" of covariates, that is, subtracting a reference value, ideally close to the center of the covariate distribution. In that way, the "reference" will be the same for all subsets of the data.

Value

A list of class c("phreg", "coxreg") with components

coefficients

Fitted parameter estimates.

cuts

Cut points for the "pch" distribution. NULL otherwise.

hazards

The estimated constant levels in the case of the "pch" distribution. NULL otherwise.

var

Covariance matrix of the estimates.

loglik

Vector of length two; first component is the value at the initial parameter values, the second component is the maximized value.

score

The score test statistic (at the initial value).

linear.predictors

The estimated linear predictors.

means

Means of the columns of the design matrix, except those columns corresponding to a factor level, if center = TRUE. Otherwise all zero.
w.means Weighted (against exposure time) means of covariates; weighted relative frequencies of levels of factors.
n Number of spells in indata (possibly after removal of cases with NA's).
events Number of events in data.
terms Used by extractor functions.
assign Used by extractor functions.
y The Surv vector.
isF Logical vector indicating the covariates that are factors.
covars The covariates.
ttr Total Time at Risk.
levels List of levels of factors.
formula The calling formula.
call The call.
method The method.
convergence Did the optimization converge?
fail Did the optimization fail? (Is NULL if not).
pfixed TRUE if shape was fixed in the estimation.

Warning

The lognormal and loglogistic distributions are included on an experimental basis for the moment. Use with care, results may be unreliable!

The gompertz distribution has an exponentially increasing hazard function under the canonical parametrization. This may cause instability in the convergence of the fitting algorithm in the case of near-exponential data. It may be resolved by using param = "rate".

Note

The lognormal and loglogistic baseline distributions are extended to a three-parameter family by adding a "proportionality" parameter (multiplying the baseline hazard function). The log of the estimated parameter turns up as '(Intercept)' in the printed output. The reason for this extension is that the standard lognormal and loglogistic distributions are not closed under proportional hazards.

Author(s)

Göran Broström

See Also

coxreg, check.dist, link{aftreg}.
Examples

```r
data(mort)
fit <- phreg(Surv(enter, exit, event) ~ ses, data = mort)
fit
plot(fit)
fit.cr <- coxreg(Surv(enter, exit, event) ~ ses, data = mort)
check.dist(fit.cr, fit)
```

phreg.fit
Parametric proportional hazards regression

Description

This function is called by `phreg`, but it can also be directly called by a user.

Usage

```r
phreg.fit(X, Y, dist, strata, offset, init, shape, control, center = NULL)
```

Arguments

- `X`: The design (covariate) matrix.
- `Y`: A survival object, the response.
- `dist`: Which baseline distribution?
- `strata`: A stratum variable.
- `offset`: Offset.
- `init`: Initial regression parameter values.
- `shape`: If positive, a fixed value of the shape parameter in the distribution. Otherwise, the shape is estimated.
- `control`: Controls convergence and output.
- `center`: Deprecated (not used). Kept for backward capability. Results are reported as is, no centering.

Details

See `phreg` for more detail.

Value

- `coefficients`: Estimated regression coefficients plus estimated scale and shape coefficients, sorted by strata, if present.
- `var`: Variance-covariance matrix
- `loglik`: Vector of length 2. The first component is the maximized loglihood with only scale and shape in the model, the second the final maximum.
piecewise

score
linear.predictors
means
cover
fail
iter
n.strata

Score test statistic at initial values
Linear predictors for each interval.
Means of the covariates
TRUE if convergence
TRUE if failure
Number of Newton-Raphson iterates.
The number of strata in the data.

Author(s)
Göran Broström

See Also
phreg

piecewise

Piecewise hazards

Description
Calculate piecewise hazards, no. of events, and exposure times in each interval indicated by cut-points.

Usage

piecewise(enter, exit, event, cutpoints)

Arguments

enter Left interval endpoint
exit Right interval endpoint
event Indicator of event
cutpoints Vector of cutpoints

Details
Exact calculation.

Value

A list with components

events Vector of number of events
exposure Vector of total exposure time
intensity Vector of hazards, intensity == events / exposure
Author(s)

Göran Broström

See Also

`perstat`

plot.aftreg

Plots output from an AFT regression

Description

Just a simple plot of the hazard (cumulative hazard, density, survival) functions for each stratum.

Usage

```R
## S3 method for class 'aftreg'
plot(x, fn = c("haz", "cum", "den", "sur"), main = NULL,
xlim = NULL, ylim = NULL, xlab = "Duration", ylab = "", col, lty,
printLegend = TRUE, new.data = x$means, ...)
```

Arguments

- **x**: A `aftreg` object
- **fn**: Which functions should be plotted? Default is all. They will scroll by, so you have to take care of explicitly what you want to be produced. See, eg, `par(mfrow = ...)`
- **main**: Header for the plot
- **xlim**: x limits
- **ylim**: y limits
- **xlab**: x label
- **ylab**: y label
- **col**: Colors?
- **lty**: Line types?
- **printLegend**: Should legend be printed? Default is yes.
- **new.data**: At which covariate values?
- **...**: Extra parameters passed to `plot`

Details

The plot is drawn at the mean values of the covariates, by default.

Value

No return value.
Author(s)

Göran Broström

See Also

aftreg

Examples

```r
y <- rllogis(40, shape = 1, scale = 1)
x <- rep(c(1,1,2,2), 10)
fit <- aftreg(Surv(y, rep(1, 40)) ~ x, dist = "loglogistic")
plot(fit)
```

Plot method for coxreg objects

Description

A plot of a baseline function of a coxreg fit is produced, one curve for each stratum.

Usage

```r
## S3 method for class 'coxreg'
plot(x, fn = c("cum", "surv", "log", "loglog"), fig = TRUE,
     xlim = NULL, ylim = NULL, main = NULL, xlab = "Duration", ylab = "",
     col, lty, printLegend = TRUE, newdata = NULL, ...)
```

Arguments

- `x`: A coxreg object
- `fn`: What should be plotted? Default is "cumhaz", and the other choices are "surv", "log", and "loglog".
- `fig`: logical. If TRUE the plot is actually drawn, otherwise only the coordinates of the curve(s) are returned.
- `xlim`: Start and end of the x axis.
- `ylim`: Start and end of the y axis.
- `main`: A headline for the plot
- `xlab`: Label on the x axis.
- `ylab`: Label on the y axis.
- `col`: Color of the curves. Defaults to ‘black’.
- `lty`: Line type(s).
- `printLegend`: Either a logical or a text string; if TRUE, a legend is printed at a default place, if FALSE, no legend is printed. Otherwise, if a text string, it should be one of "bottomleft", "bottomright", "topleft", etc., see `legend` for all possible choices.
- `newdata`: Not used
- `...`: Other parameters to pass to the plot.
Value

An object of class hazdata containing the coordinates of the curve(s).

plot.hazdata

Plots of survivor functions.

Description

Baseline hazards estimates.

Usage

```r
## S3 method for class 'hazdata'
plot(x, strata = NULL,
     fn = c("cum", "surv", "log", "loglog"), fig = TRUE,
     xlim=NULL, ylim=NULL, main=NULL, xlab=NULL, ylab=NULL, col = "black",
     lty = 1, printLegend = TRUE, where = NULL, ...)
```

Arguments

- `x`: A hazdata object, typically the 'hazards' element in the output from `link{coxreg}` with hazards = TRUE.
- `strata`: Stratum names if there are strata present.
- `fn`: Which type of plot?
- `fig`: Should a plot actually be produced? Default is TRUE.
- `xlim`: Horizontal plot limits. If NULL, calculated by the function.
- `ylim`: Vertical plot limits. If NULL, set to c(0, 1)
- `main`: A heading for the plot.
- `xlab`: Label on the x axis.
- `ylab`: Label on the y-axis.
- `col`: Color of the lines. May be a vector of length equal to No. of strata.
- `lty`: Line type(s). May be a vector of length equal to No. of strata.
- `printLegend`: Logical; should a legend be produced? Defaults to TRUE.
- `where`: Where should the legend be placed (if(printLegend))? If NULL, "bottomleft" for `fn = "surv"`, otherwise "bottomright".
- `...`: Anything that `plot.default` likes...

Details

It is also possible to have as first argument an object of type "coxreg", given that it contains a component of type "hazdata".
Value

A list where the elements are two-column matrices, one for each stratum in the model. The first column contains risktimes, and the second the y coordinates for the requested curve(s).

Author(s)

Göran Broström

Examples

```r
time0 <- numeric(50)
group <- c(rep(0, 25), rep(1, 25))
time1 <- rexp( 50, exp(group) )
event <- rep(1, 50)
fit <- coxreg(Surv(time0, time1, event) ~ strata(group), hazards = TRUE)
plot(fit$hazards)
```

plot.phreg

Plots output from a phreg regression

Description

Plot(s) of the hazard, density, cumulative hazards, and/or the survivor function(s) for each stratum.

Usage

```r
## S3 method for class 'phreg'
plot(x, fn = c("haz", "cum", "den", "sur"), main = NULL,
      xlim = NULL, ylim = NULL, xlab = "Duration", ylab = "", col, lty,
      printLegend = TRUE, new.data = NULL, ...)
```

Arguments

- `x`: A phreg object
- `fn`: Which functions should be plotted? Default is all. They will scroll by, so you have to take care explicitly what you want to be produced. See, eg, `par(mfrow = ...)`
- `main`: Header for the plot
- `xlim`: x limits
- `ylim`: y limits
- `xlab`: x label
- `ylab`: y label
- `col`: Color(s) for the curves. Defaults to black.
- `lty`: Line type for the curve(s). Defaults to 1:(No. of strata).
printLegend Logical, or character ("topleft", "bottomleft", "topright" or "bottomright"); if TRUE or character, a legend is added to the plot if the number of strata is two or more.

new.data Now deprecated; reference hazard is given by the fit; either zero or the means all covariates, and (always) the reference category for factors.

... Extra parameters passed to 'plot' and 'lines'.

Value No return value.

Author(s) Göran Broström

See Also phreg

Examples

```r
y <- r1logis(40, shape = 1, scale = 1)
x <- rep(c(1,1,2,2), 10)
fit <- phreg(Surv(y, rep(1, 40)) ~ x, dist = "loglogistic")
plot(fit)
```

plot.Surv

Plots of survivor functions.

Description

Kaplan-Meier estimates. If only one curve, confidence limits according to Greenwood's formula are drawn.

Usage

```r
## S3 method for class 'Surv'
plot(x, strata=NULL, fn = c("cum", "surv", "log", "loglog"),
     limits=TRUE, conf=0.95, main=NULL, xlab=NULL, ylab=NULL,
     xlim=NULL, ylim=NULL, lty = NULL, col = NULL,
     lty.con=NULL, col.con = NULL, x.axis = TRUE, printLegend, ...)
```
Arguments

x A Surv object.
strata Defines a partition of the data. One survivor function for each level of strata is drawn.
fn Which type of plot?
limits If TRUE, and if the number of curves is one, confidence limits are drawn.
conf The confidence level for the confidence limits.
main A heading for the plot.
xlab Label on the x axis.
ylab Label on the y-axis.
xlim Horizontal plot limits. If NULL, calculated by the function.
ylim Vertical plot limits. If NULL, set to c(0, 1)
lty Line type of curves.
col Color of curves.
lty.con Line type of confidence bands.
col.con Color of confidence bands.
x.axis Should abline(h=0) be drawn?
printLegend Logical, defaults to TRUE. If FALSE, no legend is printed, but can be added after plotting. To be used if the default place for the legend fits badly.
... Anything that plot likes...

Details

Left truncation is allowed. Note, though, that this fact may result in strange estimated curves due to lack of data in certain (low) ages.

Value

No value is returned.

Author(s)

Göran Broström

Examples

time0 <- numeric(50)
group <- c(rep(0, 25), rep(1, 25))
time1 <- rexp(50, exp(group))
event <- rep(1, 50)
plot.Surv(Surv(time0, time1, event), strata = group)
plot.weibreg

Plots output from a Weibull regression

Description

Plot(s) of the hazard, density, cumulative hazards, and/or the survivor function(s) for each stratum.

Usage

```r
## S3 method for class 'weibreg'
plot(x, fn = c("haz", "cum", "den", "sur"), main = NULL,
     xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,
     new.data = x$means, ...)
```

Arguments

- `x`: A `weibreg` object
- `fn`: Which functions should be plotted! Default is all. They will scroll by, so you have to take care explicitly what you want to be produced. See, eg, `par(mfrow = ...)`
- `main`: Header for the plot
- `xlim`: x limits
- `ylim`: y limits
- `xlab`: x label
- `ylab`: y label
- `new.data`: At which covariate values?
- `...`: Extra parameters passed to `plot`

Details

The plot is drawn at the mean values of the covariates.

Value

No return value

Author(s)

Göran Broström

See Also

- `phreg`, `weibreg`
print.aftreg

Prints aftreg objects

Description

The hazard, the cumulative hazard, the density, and the survivor baseline functions are plotted.

Usage

```r
## S3 method for class 'aftreg'
print(x, digits = max(options()$digits - 4, 3), ...)  
```

Arguments

- `x`: A aftreg object
- `digits`: Precision in printing
- `...`: Not used.

Value

No value is returned.

Note

Doesn’t work for threeway or higher order interactions. Use `print.coxph` in that case.

Author(s)

Göran Broström

See Also

`phreg`, `print.coxph`
print.coxreg

Prints coxreg objects

Description

More "pretty-printing" than print.coxph, which is a fall-back for 'difficult' objects.

Usage

```r
## S3 method for class 'coxreg'
print(x, digits = max(options()$digits - 4, 3), ...)
```

Arguments

- `x` A coxreg object, typically the result of running coxreg
- `digits` Output format.
- `...` Other arguments.

Details

Doesn’t work with three-way and higher interactions, in which case print.coxph is used. Prints also output from mlreg.

Value

No value is returned.

Author(s)

Göran Broström

See Also

coxreg, print.coxph

print.glmmboot

Prints a 'glmmML' object.

Description

A glmmboot object is the output of glmmboot.

Usage

```r
## S3 method for class 'glmmboot'
print(x, digits = max(3,getOption("digits") - 3), na.print = "", ...)
```
Arguments
 x The glmmboot object
 digits Number of printed digits.
 na.print How to print NAs
 ... Additional parameters, which are ignored.

Details
 Nothing in particular.

Value
 A short summary of the object is printed.

Note
 This is the only summary method available for the moment.

Author(s)
 Göran Broström

See Also
 glmmboot

print.glmmML

print.glmmML
 Prints a 'glmmML' object.

Description
 A glmmML object is the output of glmmML.

Usage
 ## S3 method for class 'glmmML'
 print(x, digits = max(3,getOption("digits") - 3), na.print = "", ...)

Arguments
 x The glmmML object
 digits Number of printed digits.
 na.print How to print NAs
 ... Additional parameters, which are ignored.
Details
Nothing in particular.

Value
A short summary of the object is printed.

Note
This is the only summary method available for the moment.

Author(s)
Göran Broström

See Also
`g1mmML`

Description
The hazard, the cumulative hazard, the density, and the survivor baseline functions are plotted.

Usage
```r
## S3 method for class 'phreg'
print(x, digits = max(options()$digits - 4, 3), ...)
```

Arguments
- `x` A phreg object
- `digits` Precision in printing
- `...` Not used.

Value
No value is returned.

Note
Doesn’t work for threeway or higher order interactions. Use `print.coxph` in that case.

Author(s)
Göran Broström
print.risksets

See Also

phreg, print.coxph

print.risksets

Prints a summary of the content of a set of risk sets.

Description

Given the output from risksets, summary statistics are given for it.

Usage

S3 method for class 'risksets'
print(x, ...)

Arguments

x

An object of class 'risksets'.

...

Not used for the moment.

Value

No value is returned; the function prints summary statistics of risk sets.

Note

There is no summary.risksets yet. On the TODO list.

Author(s)

Göran Broström

See Also

risksets

Examples

rs <- with(mort, risksets(Surv(enter, exit, event)))
print(rs)
print.weibreg

Prints weibreg objects

Description

The hazard, the cumulative hazard, the density, and the survivor baseline functions are plotted.

Usage

```r
## S3 method for class 'weibreg'
print(x, digits = max(options()$digits - 4, 3), ...)
```

Arguments

- `x`: A `weibreg` object
- `digits`: Precision in printing
- `...`: Not used.

Value

No value is returned.

Note

 Doesn’t work for three-way or higher order interactions. Use `print.coxph` in that case.

Author(s)

Göran Broström

See Also

- `weibreg`, `print.coxph`

risksets

Finds the compositions and sizes of risk sets

Description

Focus is on the risk set composition just prior to a failure.

Usage

```r
risksets(x, strata = NULL, max.survs = NULL, members = TRUE)
```
Arguments

- **x**
 - A Surv object.
- **strata**
 - Stratum indicator.
- **max.survs**
 - Maximum number of survivors in each risk set. If smaller than the 'natural number', survivors are sampled from the present ones. No sampling if missing.
- **members**
 - If TRUE, all members of all risk sets are listed in the resulting list, see below.

Details

If the input argument max.survs is left alone, all survivors are accounted for in all risk sets.

Value

A list with components

- **antrs**
 - No. of risk sets in each stratum. The number of strata is given by `length(antrs)`.
- **risktimes**
 - Ordered distinct failure time points.
- **eventset**
 - If 'members' is TRUE, a vector of pointers to events in each risk set, else NULL.
- **riskset**
 - If 'members' is TRUE, a vector of pointers to the members of the risk sets, in order. The 'n.events' first are the events. If 'members' is FALSE, 'riskset' is NULL.
- **size**
 - The sizes of the risk sets.
- **n.events**
 - The number of events in each risk set.
- **sample_fraction**
 - The sampling fraction of survivors in each risk set.

Note

can be used to "sample the risk sets".

Author(s)

Göran Broström

See Also

table.events, coxreg.

Examples

```r
enter <- c(0, 1, 0, 0)
exit <- c(1, 2, 3, 4)
event <- c(1, 1, 1, 0)
risksets(Surv(enter, exit, event))
```
Old age mortality, Scania, southern Sweden, 1813-1894.

Description
The data consists of old age life histories from 1 January 1813 to 31 December 1894. Only (parts of) life histories above age 50 is considered.

Usage
data(scania)

Format
A data frame with 1931 observations from 1931 persons on the following 9 variables.

- id: Identification number (enumeration).
- enter: Start age for the interval.
- exit: Stop age for the interval.
- event: Indicator of death; equals TRUE if the person died at the end of the interval, FALSE otherwise.
- birthdate: Birthdate as a real number (i.e., "1765-06-27" is 1765.490).
- sex: Gender, a factor with levels male and female.
- parish: One of five parishes in Scania, coded 1, 2, 3, 4, 5. Factor.
- ses: Socio-economic status at age 50, a factor with levels upper and lower.
- immigrant: A factor with levels no region and yes.

Details
The Scanian area in southern Sweden was during the 19th century a mainly rural area.

Source
The Scanian Economic Demographic Database, Lund University, Sweden.

References
http://www.ed.lu.se/databases

Examples
data(scania)
summary(scania)
summary.aftreg
Prints aftreg objects

Description

This is the same as `print.aftreg`

Usage

```r
## S3 method for class 'aftreg'
summary(object, ...)
```

Arguments

- `object`
 A aftreg object
- `...`
 Additional ...

Author(s)

Göran Broström

See Also

`print.coxreg`

Examples

```r
## The function is currently defined as
function (object, ...)  
print(object)
```

summary.coxreg
Prints coxreg objects

Description

This is the same as `print.coxreg`

Usage

```r
## S3 method for class 'coxreg'
summary(object, ...)
```

Arguments

- `object`
 A coxreg object
- `...`
 Additional ...

Author(s)

Göran Broström

See Also

print.coxreg

Examples

The function is currently defined as
function (object, ...)
print(object)

summary.glmmboot Summary of a glmmboot object

Description

It simply calls print.glmmboot

Usage

S3 method for class 'glmmboot'
summary(object, ...)

Arguments

object A glmmboot object

... Additional arguments

Details

A summary method will be written soon.

Value

Nothing is returned.

Note

Preliminary

Author(s)

Göran Broström

See Also

print.glmmboot
Summary of a glmmML object

Description

It simply calls print.glmmML

Usage

S3 method for class 'glmmML'
summary(object, ...)

Arguments

object A glmmML object

... Additional arguments

Value

Nothing is returned.

Note

Preliminary

Author(s)

Göran Broström

See Also

print.glmmML

Prints phreg objects

Description

This is the same as print.phreg

Usage

S3 method for class 'phreg'
summary(object, ...)
summary.weibreg

Arguments

object A phreg object
... Additional ...

Author(s)

Göran Broström

See Also

print.coxreg

Examples

The function is currently defined as
function (object, ...)
print(object)

summary.weibreg *Prints a weibreg object*

Description

This is the same as print.weibreg

Usage

S3 method for class 'weibreg'
summary(object, ...)

Arguments

object A weibreg object
... Additional ...

Author(s)

Göran Broström

See Also

print.weibreg

Examples

The function is currently defined as
function (object, ...)
print(object)
SurvSplit

SurvSplit

Split a survival object at specified durations.

Description

Given a survival object, (a matrix with two or three columns) and a set of specified cut times, split each record into multiple subrecords at each cut time. The new survival object will be in ‘counting process’ format, with an enter time, exit time, and event status for each record.

Usage

```r
SurvSplit(Y, cuts)
```

Arguments

- **Y**: A survival object, a matrix with two or three columns.
- **cuts**: The cut points, must be strictly positive and distinct.

Value

A list with components

- **y**: The new survival object with three columns, i.e., in ‘counting process’ form.
- **ivl**: Interval No., starting from leftmost, (0, cuts[1]) or similar.
- **idx**: Row number for original Y row.

Note

This function is used in `phreg` for the piecewise constant hazards model. It uses `age.window` for each interval.

Author(s)

Göran Broström

See Also

`survSplit, age.window`

Examples

```r
## Should be DIRECTLY executable !! ----
##---> Define data, use random, 
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function(Y, cuts){
  if (NCOL(Y) == 2) Y <- cbind(rep(0, NROW(Y)), Y)
```
sw07 <- cbind(Y, 1:ROW(Y), rep(-1, ROW(Y)))
colnames(sw07) <- c("enter", "exit", "event", "idx", "ivl")
n <- length(cuts)
cuts <- sort(cuts)
if ((cuts[1] <= 0) || (cuts[n] == Inf))
 stop("cuts’ must be positive and finite.")
cuts <- c(0, cuts, Inf)
n <- n + 1
out <- list()
for (i in 1:n){
 out[[i]] <- age.window(sw07, cuts[i:(i+1)])
 out[[i]]$ivl <- i
 out[[i]] <- t(out[[i]])
}
Y <- matrix(unlist(out), ncol = 5, byrow = TRUE)
colnames(Y) <- colnames(sw07)
list(Y = Y[, 1:3],
 ivl = Y[, 5],
 idx = Y[, 4])

sw07

Description

The Swedish population and No. of deaths by age and sex in the ages 61–80. Data from the year 2007.

Usage

data(sw07)

Format

A data frame with 80 rows and five variables.

pop Average population size during the year 2007 by age and sex.
deaths Number of deaths by age and sex during the year 2007.
sex Sex.
age Age.
log.pop The logarithm of the first variable, pop. Included for convenience, may be used as an offset in a Poisson regression.
Details

The average population is calculated as the mean of the population 1 January 2007 and 1 January 2008.

Source

Data is taken from Statistics Sweden.

References

http://www.scb.se

Examples

data(swe07)
fit <- glm(deaths ~ offset(log.pop) + sex * as.factor(age), family = poisson, data = swe07)
drop1(fit, test = "Chisq") ## Proportional hazards?

data(swe07)
fit <- glm(deaths ~ offset(log.pop) + sex * as.factor(age), family = poisson, data = swe07)
drop1(fit, test = "Chisq") ## Proportional hazards?

Description

From input data of the 'interval' type, with an event indicator, summary statistics for each risk set (at an event time point) are calculated.

Usage

table.events(enter=rep(0, length(exit)), exit, event, strict=TRUE)

Arguments

enter Left truncation time point.
exit End time point, an event or a right censoring.
event Event indicator.
strict If TRUE, then tabulating is not done after a time point where all individuals in a riskset failed.

Value

A list with components

times Ordered distinct event time points.
events Number of events at each event time point.
riskset.sizes Number at risk at each event time point.
toBinary

Transforms a "survival" data frame into a data frame suitable for binary (logistic) regression

Description

The result of the transformation can be used to do survival analysis via logistic regression. If the cloglog link is used, this corresponds to a discrete time analogue to Cox’s proportional hazards model.

Usage

toBinary(dat, surv = c("enter", "exit", "event"), strats, max.survs = NROW(dat))

Arguments

dat A data frame with three variables representing the survival response. The default is that they are named enter, exit, and event

surv A character string with the names of the three variables representing survival.

strats An eventual stratification variable.

max.survs Maximal number of survivors per risk set. If set to a (small) number, survivors are sampled from the risk sets.

Details

toBinary calls risksets in the eha package.
Value

Returns a data frame expanded risk set by risk set. The three "survival variables" are replaced by a variable named event (which overwrites an eventual variable by that name in the input). Two more variables are created, riskset and orig.row.

- **event**: Indicates an event in the corresponding risk set.
- **riskset**: Factor (with levels 1, 2, ...) indicating risk set.
- **risktime**: The 'risktime' (age) in the corresponding riskset.
- **orig.row**: The row number for this item in the original data frame.

Note

The survival variables must be three. If you only have `exit` and `event`, create a third containing all zeros.

Author(s)

Göran Broström

References

~put references to the literature/web site here ~

See Also

- `coxreg`, `glm`.

Examples

```r
enter <- rep(0, 4)
ext <- 1:4
ever <- rep(1, 4)
z <- rep(c(-1, 1), 2)
dat <- data.frame(enter, exit, event, z)
bindat <- toBinary(dat)
dat
bindat
coxreg(Surv(enter, exit, event) ~ z, method = "ml", data = dat)
## Same as:
summary(glm(event ~ z + riskset, data = bindat, family = binomial(link = cloglog)))
```
toDate

Convert time in years since "0000-01-01" to a date.

Description

This function uses \texttt{as.Date} and a simple linear transformation.

Usage

toDate(times)

Arguments

times a vector of durations

Value

A vector of dates as character strings of the type "1897-05-21".

Author(s)

Göran Broström

See Also

toTime

Examples

\begin{verbatim}
 # Should be DIRECTLY executable !! ----
 #-- Define data, use random,
 #-- or do help(data=index) for the standard data sets.
 toDate(1897.357)
\end{verbatim}

toTime

Calculate duration in years from "0000-01-01" to a given date

Description

Given a vector of dates, the output is a vector of durations in years since "0000-01-01".

Usage

toTime(dates)
weibreg

Arguments

dates A vector of dates in character form or of class date

Value

A vector of durations, as described above.

Author(s)

Göran Broström

See Also

toDate

Examples

```r
## Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

toTime(c("1897-05-16", "1901-11-21"))
```

weibreg Weibull Regression

Description

Proportional hazards model with baseline hazard(s) from the Weibull family of distributions. Allows for stratification with different scale and shape in each stratum, and left truncated and right censored data.

Usage

```r
weibreg(formula = formula(data), data = parent.frame(),
na.action = getOption("na.action"), init, shape = 0,
control = list(eps = 1e-04, maxiter = 10, trace = FALSE),
singular.ok = TRUE, model = FALSE, x = FALSE, y = TRUE, center = TRUE)
```

Arguments

formula a formula object, with the response on the left of a ~ operator, and the terms on the right. The response must be a survival object as returned by the Surv function.

data a data.frame in which to interpret the variables named in the formula.

na.action a missing-data filter function, applied to the model.frame, after any subset argument has been used. Default is options()$na.action.
init vector of initial values of the iteration. Default initial value is zero for all variables.
shape If positive, the shape parameter is fixed at that value (in each stratum). If zero or negative, the shape parameter is estimated. If more than one stratum is present in data, each stratum gets its own estimate.
control a list with components eps (convergence criterion), maxiter (maximum number of iterations), and silent (logical, controlling amount of output). You can change any component without mention the other(s).
singular.ok Not used.
model Not used.
x Return the design matrix in the model object?
y Return the response in the model object?
center Deprecated, and not used. Will be removed in the future.

Details
The parameterization is the same as in \texttt{coxreg} and \texttt{coxph}, but different from the one used by \texttt{survreg}. The model is
\[h(t; a, b, \beta, z) = \left(\frac{a}{b}\right) \left(\frac{t}{b}\right)^{a-1} \exp(z\beta) \]
This is in correspondence with \texttt{Weibull}. To compare regression coefficients with those from \texttt{survreg} you need to divide by estimated shape (\hat{a}) and change sign. The p-values and test statistics are however the same, with one exception; the score test is done at maximized scale and shape in \texttt{weibreg}.
This model is a Weibull distribution with shape parameter a and scale parameter $b \exp(-z\beta/a)$

Value
A list of class \texttt{c("weibreg", "coxreg")} with components

- \texttt{coefficients} Fitted parameter estimates.
- \texttt{var} Covariance matrix of the estimates.
- \texttt{loglik} Vector of length two; first component is the value at the initial parameter values, the second component is the maximized value.
- \texttt{score} The score test statistic (at the initial value).
- \texttt{linear.predictors} The estimated linear predictors.
- \texttt{means} Means of the columns of the design matrix.
- \texttt{w.means} Weighted (against exposure time) means of covariates; weighted relative frequencies of levels of factors.
- \texttt{n} Number of spells in indata (possibly after removal of cases with NA's).
- \texttt{events} Number of events in data.
- \texttt{terms} Used by extractor functions.
- \texttt{assign} Used by extractor functions.
weibreg

y The Surv vector.
isf Logical vector indicating the covariates that are factors.
covars The covariates.
ttt Total Time at Risk.
levels List of levels of factors.
formula The calling formula.
call The call.
method The method.
convergence Did the optimization converge?
fail Did the optimization fail? (Is NULL if not).
pfixed TRUE if shape was fixed in the estimation.

Warning

The print method print.weibreg doesn’t work if threeway or higher order interactions are present.

Note further that covariates are internally centered, if center = TRUE, by this function, and this
is not corrected for in the output. This affects the estimate of log(scale), but nothing else. If you
don’t like this, set center = FALSE.

Note

This function is not maintained, and may behave in unpredictable ways. Use phreg with dist = "weibull"
(the default) instead! Will soon be declared deprecated.

Author(s)

Göran Broström

See Also

phreg, coxreg, print.weibreg

Examples

dat <- data.frame(time = c(4, 3, 1, 1, 2, 2, 3),
 status = c(1, 1, 1, 0, 1, 1, 0),
 x = c(0, 2, 1, 1, 1, 0, 0),
 sex = c(0, 0, 0, 0, 1, 1, 1))
weibreg(Surv(time, status) ~ x + strata(sex), data = dat) # stratified model
weibreg.fit

Weibull regression

Description

This function is called by weibreg, but it can also be directly called by a user.

Usage

weibreg.fit(X, Y, strata, offset, init, shape, control, center = TRUE)

Arguments

X The design (covariate) matrix.
Y A survival object, the response.
strata A stratum variable.
offset Offset.
init Initial regression parameter values.
shape If positive, a fixed value of the shape parameter in the Weibull distribution. Otherwise, the shape is estimated.
control Controls convergence and output.
center Should covariates be centered?

Details

See weibreg for more detail.

Value

coefficients Estimated regression coefficients plus estimated scale and shape coefficients, sorted by strata, if present.
var
loglik Vector of length 2. The first component is the maximized loglihood with only scale and shape in the model, the second the final maximum.
score Score test statistic at initial values
linear.predictors Linear predictors for each interval.
means Means of the covariates
conver TRUE if convergence
fail TRUE if failure
iter Number of Newton-Raphson iterates.
n.strata The number of strata in the data.
Description

Calculates minus the log likelihood function and its first and second order derivatives for data from a Weibull regression model. Is called by `weibreg`.

Usage

```r
wfunk(bbeta = NULL, lambda, p, x = NULL, y, offset = rep(0, length(y)),
ord = 2, pfixed = FALSE)
```

Arguments

- `beta`: Regression parameters
- `lambda`: The scale parameter
- `p`: The shape parameter
- `x`: The design (covariate) matrix.
- `y`: The response, a survival object.
- `offset`: Offset.
- `ord`: `ord = 0` means only log likelihood, `1` means score vector as well, `2` log likelihood, score and hessian.
- `pfixed`: Logical, if TRUE the shape parameter is regarded as a known constant in the calculations, meaning that it is not cosidered in the partial derivatives.

Details

Note that the function returns log likelihood, score vector and minus hessian, i.e. the observed information. The model is

\[
h(t; p, \lambda, \beta, z) = p/\lambda (t/\lambda)^{(p-1)} \exp(-t/\lambda^p) \exp(z\beta)
\]

This is in correspondence with `dweibull`.
Value

A list with components

f The log likelihood. Present if ord >= 0
fp The score vector. Present if ord >= 1
fpp The negative of the hessian. Present if ord >= 2

Author(s)

Göran Broström

See Also

weibreg
Index

*Topic cluster
toBinary, 74
*Topic datasets
fert, 18
infants, 30
logrye, 34
male.mortality, 38
mort, 42
oldmort, 43
scania, 66
swe07, 72
*Topic distribution
check.dist, 9
EV, 17
Gompertz, 28
Loglogistic, 32
Lognormal, 33
Makeham, 37
pch, 44
phfunc, 46
wfunk, 81
*Topic dplot
plot.aftreg, 52
plot.phreg, 55
plot.weibreg, 58
*Topic manip
check.surv, 10
cro, 16
join.spells, 31
SurvSplit, 71
*Topic math
ghq, 20
*Topic nonlinear
glmmboot, 21
glmmbootFit, 23
*Topic nonparametric
perstat, 45
piecewise, 51
*Topic printing
ltx, 35
*Topic print
print.glmmboot, 60
print.glmmML, 61
summary.aftreg, 67
summary.coxreg, 67
summary.glmmboot, 68
summary.glmmML, 69
summary.phreg, 69
summary.weibreg, 70
*Topic regression
aftreg, 3
aftreg.fit, 5
coxreg, 11
coxreg.fit, 14
glmmboot, 21
glmmbootFit, 23
glmmML, 24
glmmML.fit, 27
mlreg, 39
phreg, 47
phreg.fit, 50
print.aftreg, 59
print.phreg, 62
print.weibreg, 64
weibreg, 77
weibreg.fit, 80
*Topic summary
print.risksets, 63
*Topic survival
aftreg, 3
aftreg.fit, 5
age.window, 7
cal.window, 8
check.surv, 10
coxreg, 11
coxreg.fit, 14
geome.fit, 19
hweibull, 29
INDEX

join.spells, 31
make.communal, 36
mlreg, 39
perstat, 45
phfunc, 46
phreg, 47
phreg.fit, 50
piecewise, 51
plot.aftreg, 52
plot.hazdata, 54
plot.phreg, 55
plot.Surv, 56
plot.weibreg, 58
print.aftreg, 59
print.coxreg, 60
print.phreg, 62
print.weibreg, 64
risksets, 64
summary.aftreg, 67
summary.coxreg, 67
summary.phreg, 69
summary.weibreg, 70
table.events, 73
toBinary, 74
toDate, 76
toTime, 76
weibreg, 77
weibreg.fit, 80
wfunk, 81

aftreg, 3, 5–8, 10, 32–35, 37, 53
aftreg.fit, 5
age.window, 7, 8, 71
cal.window, 7, 8, 37
check.dist, 9, 49
check.surv, 10, 32
coxph, 12, 13, 37, 48, 78
coxreg, 5, 7–10, 11, 14, 15, 19, 20, 32, 35–37, 40–42, 48, 49, 60, 65, 75, 78, 79
coxreg.fit, 14
cro, 16
dEV (EV), 17
dgompertz (Gompertz), 28
dllogis (Loglogistic), 32
dmakeham (Makeham), 37
dpch (pch), 44
dweibull, 30, 81

EV, 17
fert, 18
geome.fit, 19
ghq, 20
glm, 21, 26, 75
glm.control, 21, 23, 25, 27
glmmboot, 21, 24, 26, 61
glmmbootfit, 23
glmmML, 20, 24, 28, 62
glmmML.fit, 27
Gompertz, 28, 48

HEV (EV), 17
hEV (EV), 17
Hgompertz (Gompertz), 28
hgompertz (Gompertz), 28
Hllogis (Loglogistic), 32
hllogis (Loglogistic), 32
Hlnorm (Lognormal), 33
hlnorm (Lognormal), 33
Hmakeham (Makeham), 37
hmakeham (Makeham), 37
Hpch (pch), 44
hpch (pch), 44
Hweibull (hweibull), 29
hweibull, 29

infants, 30
join.spells, 10, 31

legend, 53
Llogis (Loglogistic), 32
Lnorm (Lognormal), 33
Loglogistic, 32
Lognormal, 33, 34
logrye, 34
ltx, 35

make.communal, 36
Makeham, 37
male.mortality, 38
match, 17
mlreg, 39, 60
mort, 42

oldmort, 43
optim, 22, 26
INDEX

paste, 17
pch, 44
perstat, 45, 52
pEV (EV), 17
pgompertz (Gompertz), 28
phfunc, 46
phreg, 5, 9, 33–35, 47, 47, 50, 51, 56, 58, 59, 63, 71, 79
phreg.fit, 50
piecewise, 46, 51
pllogis (Loglogistic), 32
plot.aftreg, 52
plot.coxreg, 53
plot.default, 54
plot.hazdata, 54
plot.phreg, 55
plot.Surv, 56
plot.weibreg, 58
pmakeham (Makeham), 37
ppch (pch), 44
print.aftreg, 59, 67
print.coxph, 59, 60, 62–64
print.coxreg, 60, 67, 68, 70
print.glmmboot, 60, 68
print.glmmML, 61, 69
print.phreg, 62, 69
print.risksets, 63
print.weibreg, 64, 70, 79
pweibull, 30
qEV (EV), 17
qgompertz (Gompertz), 28
qllogis (Loglogistic), 32
qmakeham (Makeham), 37
qpch (pch), 44
rEV (EV), 17
rgompertz (Gompertz), 28
risksets, 13, 15, 41, 42, 64, 74
rllogis (Loglogistic), 32
rmakeham (Makeham), 37
rpch (pch), 44

scania, 66
summary.aftreg, 67
summary.coxreg, 67
summary.glmmboot, 68
summary.glmmML, 69
summary.phreg, 69
summary.weibreg, 70
survreg, 4, 48, 78
SurvSplit, 71
survSplit, 71
swe07, 72
table.events, 65, 73
toBinary, 74
toDate, 76, 77
toTime, 76, 76
weibreg, 58, 64, 77, 80–82
weibreg.fit, 80
Weibull, 78
wfunk, 81