Package ‘cshapes’

December 2, 2016

Version 0.6
Date 2016-11-30
Title The CShapes Dataset and Utilities
Author Nils B. Weidmann <nils.weidmann@uni-konstanz.de>, Kristian Skrede Gleditsch <ksg@essex.ac.uk>
Maintainer Nils B. Weidmann <nils.weidmann@uni-konstanz.de>

URL http://nils.weidmann.ws/projects/cshapes,
https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/inst/shp/cshapes_shapefile_documentation.txt?root=cshapes

Depends R (>= 2.8.0), sp (>= 1.0-5), maptools (>= 0.8-21), plyr (>= 1.8)
LazyLoad yes

Description Package for CShapes, a GIS dataset of country boundaries (1946-today). Includes functions for data extraction and the computation of distance matrices and -lists.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2016-12-02 23:05:04

R topics documented:
cshapes-package .. 2
cshp .. 3
distlist ... 4
distmatrix ... 5

Index 7
Description

R Package for CShapes, a GIS dataset of country boundaries (1946-2015). Includes functions for
data extraction and the computation of weights matrices.

Details

The cshapes package facilitates the use of CShapes from R. CShapes is a GIS dataset of historical
country boundaries (1946-today) and compatible with two country lists (Gleditsch and Ward 1999
and Correlates of War, see references below). In particular, the package enables access to the dataset
directly, as well as distance computations on country polygons for specific points in time. Access
to the dataset from within R is done using the cshp function. Two functions exist to compute
minimum-, capital- and centroid distances between countries: the distmatrix function returns
these as a matrix (convenient for many spatial statistical applications), and the distlist function
returns a list of dyadic distances (distances between country pairs). See the examples given in the
documentation of the functions in this package. The main cshapes website is located at http://
nils.weidmann.ws/projects/cshapes and contains additional documentation and examples
for the dataset and the R package.

For more information on the CShapes dataset, see Weidmann, Nils B., Doreen Kuse and Kristian

Author(s)

Nils B. Weidmann <nils.weidmann@uni-konstanz.de>, Doreen Kuse <doreen.kuse@gmail.com>,
Kristian S. Gleditsch <ksg@essex.ac.uk>

Maintainer: Nils B. Weidmann <nils.weidmann@uni-konstanz.de>, Kristian S. Gleditsch <ksg@essex.ac.uk>

References

correlatesofwar.org.

privatewww.essex.ac.uk/~ksg/statelist.html.
cshp

Access the CShapes dataset in R

description

The cshp function makes the cshapes dataset available for usage in R. If no date is given, it returns a SpatialPolygonsDataFrame with the complete CShapes dataset. If specified, the date is used to create a snapshot of the dataset, containing all cshapes polygons active at the given date.

Usage

cshp(date=NA, useGW=TRUE)

Arguments

date The date for which the cshapes polygons should be extracted. This argument must be of type Date and must be in the range 1/1/1946 - end of the dataset. If omitted, the complete dataset is returned.

useGW Boolean argument specifying the system membership coding. TRUE (Default): Gleditsch and Ward (1999). FALSE: Correlates of War.

Value

A SpatialPolygonsDataFrame, containing the complete CShapes dataset, or the CShapes snapshot for the specified date.

Author(s)

Nils B. Weidmann

See Also

SpatialPolygonsDataFrame

Examples

Retrieve the dataset
cshp.data <- cshp()

Get summary statistics
summary(cshp.data)

Extract Switzerland
switzerland <- cshp.data[cshp.data$COWCODE==225,]

Plot Switzerland
plot(switzerland)
Extract a snapshot of cshapes as of June 30, 2002
using the Gleditsch&Ward coding system

cshp.2002 <- cshp(date=as.Date("2002-6-30"), useGW=TRUE)

distlist

Description

This function computes a distance list for the given date. It selects all the active CShapes polygons, determines their distances and outputs a distance list. A distance list is a list of dyads of countries and the distances between them. This list is returned as a data frame with three columns:

1. **ccode1** – country 1’s code in the coding system specified by the `useGW` parameter
2. **ccode2** – country 2’s code in the coding system specified by the `useGW` parameter
3. **capdist, centdist, mindist** – distance between country 1 and country 2 in km, where distance can be either capital distance, centroid distance or minimum distance, as specified by the `type` parameter. The latter computation is very expensive if polygons have many nodes. For that reason, the function simplifies the country polygons according to the Douglas-Peucker algorithm (http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm), which eliminates points from the polygons and speeds up computation. The `tolerance` parameter specifies the tolerance for the simplification; a value of 0 disables it.

Note that the function returns directed dyads. For example, if there is a country with code 1 and a country with code 2, the resulting data frame contains the dyads (1,2), (2,1), (1,1) and (2,2). It is easy to extract the directed dyads from this data frame (see example below).

Usage

```r
distlist(date, type="mindist", tolerance=0.1, useGW=T)
```

Arguments

- **date**
 - The date for which the distance list should be computed. This argument must be of type Date and must be in the range 1/1/1946 - end of the dataset.

- **type**
 - Specifies the type of distance list: `capdist` for capital distances, `centdist` for centroid distances, and `mindist` for minimum distances.

- **useGW**

- **tolerance**
 - Tolerance for polygon simplification according the the Douglas-Peucker algorithm. Only used for `mindist` computation (type="mindist").

Value

A distance list with three columns, the first two of which contain the identifiers for the two countries in the dyad, and the third one containing the distance between the two countries.
Author(s)

Nils B. Weidmann

Examples

```r
# Compute a list of minimum distances
# for the international system on 1/1/1946
# using the Correlates of War list and the default accuracy
## Not run: dl <- distlist(as.Date("1946-1-1"), type="capdist", tolerance=0.5, useGW=FALSE)

# we eliminate duplicate dyads
## Not run: dl <- subset(dl, ccode1 < ccode2)
```

distmatrix

Compute distance matrices on the CShapes dataset

Description

This function computes a distance matrix for the given date. It selects all the active CShapes polygons, determines their distances and outputs a distance matrix in kilometers. The function can compute different types of distance matrices, specified by the "type" parameter: (i) capital distances, and (ii) centroid distances, and (iii) minimum distances between polygons. The latter computation is very expensive if polygons have many nodes. For that reason, the function simplifies the country polygons according to the Douglas-Peucker algorithm (http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm), which eliminates points from the polygons and speeds up computation. The tolerance parameter specifies the tolerance for the simplification; a value of 0 disables it.

Usage

```r
distmatrix(date, type="mindist", tolerance=0.1, useGW=T)
```

Arguments

- **date**
 The date for which the distance matrix should be computed. This argument must be of type Date and must be in the range 1/1/1946 - end of the dataset.

- **type**
 Specifies the type of distance matrix: capdist for capital distances, centdist for centroid distances, and mindist for minimum distances.

- **useGW**

- **tolerance**
 Tolerance for polygon simplification according the the Douglas-Peucker algorithm. Only used for mindist computation (type="mindist").

Value

A quadratic weights matrix, with the row and column labels containing the country identifiers in the specified coding system (COW or G&W).
Author(s)
Nils B. Weidmann

Examples

Compute a matrix of minimum distances
for the international system on 1/1/1946
using the Correlates of War list and the default accuracy
Not run: wmat <- distmatrix(as.Date("1946-1-1"), type="capdist", tolerance=0.5, useGW=FALSE)

For model estimation, our matrix should contain
the inverted distances
Not run: wmat <- 1/wmat

Fix the values along the diagonale
Not run: diag(wmat) <- 0
Index

*Topic package
 cshapes-package, 2

 cshapes (cshapes-package), 2
 cshapes-package, 2
 cshp, 2, 3

 distlist, 2, 4
 distmatrix, 2, 5

 SpatialPolygonsDataFrame, 3