Package ‘DAAGxtras’

February 19, 2015

Version 0.8-4
Date 2013-October-16
Title Data Sets and Functions, supplementary to DAAG
Author John Maindonald
Maintainer John Maindonald <john.maindonald@anu.edu.au>
Description various data sets used in additional exercises for
the book Maindonald, J.H. and Braun, W.J. (3rd edn 2010)
``Data Analysis and Graphics Using R'', and for a
'data Mining' course. Note that a number of datasets
that were in earlier versions of this package have been
transferred to the DAAG package.

LazyLoad true
LazyData true
Depends R (>= 2.10.0)
Suggests DAAG, MASS, lattice, randomForest
ZipData yes
License Unlimited
URL http://www.maths.anu.edu.au/~johnm
NeedsCompilation no
Repository CRAN
Date/Publication 2013-10-16 10:46:09

R topics documented:

DAAGxtras-package .. 2
compareModels .. 2
covsample ... 4
covtest .. 6
covtrain .. 9
earlycrcktr ... 11
The R DAAGxtras Package

Description

various data sets used in additional exercises for the book Maindonald, J.H. and Braun, W.J. (3rd edn 2010) "Data Analysis and Graphics Using R", and/or used for various instructional purposes.

Details

Note especially the datasets rockArt (multivariate binary data on Pacific rock art), audists (Australian road distances), greatLakes (Great Lakes lake levels, by year), and the dataset fishRivers that has information on preferred fish river types.

For a complete list, use library(help="DAAGxtras").

Author(s)

Author: John Maindonald
Maintainer: John Maindonald <john.maindonald@anu.edu.au>

cmpareModels

Compare accuracy of alternative classification methods

Description

Compare, between models, probabilities that the models assign to membership in the correct group or class. Probabilities should be estimated from cross-validation or from bootstrap out-of-bag data or preferably for test data that are completely separate from the data used to derive the model.

Usage

compareModels(groups = fgl$type, estprobs = list(lda = NULL, rf = NULL),
gpnames = NULL, robust = TRUE, print = TRUE)
compareModels

Arguments

- **groups**: Factor that specifies the groups
- **estprobs**: List whose elements (with names that identify the models) are matrices that give for each observation (row) estimated probabilities of membership for each of the groups (columns).
- **gpnames**: Character: names for groups, if different from `levels(groups)`
- **robust**: Logical, TRUE or FALSE
- **print**: Logical. Should results be printed?

Details

The estimated probabilities are compared directly, under normal distribution assumptions. An effect is fitted for each observation, plus an effect for the method. Comparison on a logit scale may sometimes be preferable. An option to allow this is scheduled for incorporation in a later version.

Value

- **modelAVS**: Average accuracies for models
- **modelSE**: Approximate average SE for comparing models
- **gpAVS**: Average accuracies for groups
- **gpSE**: Approximate average SE for comparing groups
- **obsEff**: Effects assigned to individual observations

Note

The analysis estimates effects due to model and group (gp), after accounting for differences between observations.

Author(s)

John Maindonald

Examples

```r
library(MASS)
library(DAAG)
ldahat <- lda(species ~ length+breadth, data=cuckoos, CV=TRUE)$posterior
qdahat <- qda(species ~ length+breadth, data=cuckoos, CV=TRUE)$posterior
compareModels(groups=cuckoos$species, estprobs=list(lda=ldahat,
                                         qda=qdahat), robust=FALSE)
rfOUT <- try(require(randomForest, quietly=TRUE))
rfOUT.log <- is.logical(rfOUT)
if (((rfOUT.log==TRUE)&(rfOUT==TRUE))){
  rfhat <- predict(randomForest(species ~ length+breadth, data=cuckoos),
                   type="prob")
  compareModels(groups=cuckoos$species, estprobs=list(lda=ldahat,
                                        qda=qdahat, rf=rfhat), robust=FALSE)
}
```
Sample of UCI Machine Learning Forest Cover Dataset

Description

Forest cover type is recorded, for every 50th observation taken from 581012 observations in the original dataset, together with a physical geographical variables that may account for the forest cover type.

Usage

data(covsample)

Format

A data frame with 11318 observations on the following 55 variables.

V1 a numeric vector
V2 a numeric vector
V3 a numeric vector
V4 a numeric vector
V5 a numeric vector
V6 a numeric vector
V7 a numeric vector
V8 a numeric vector
V9 a numeric vector
V10 a numeric vector
V11 a numeric vector
V12 a numeric vector
V13 a numeric vector
V14 a numeric vector
V15 a numeric vector
V16 a numeric vector
V17 a numeric vector
V18 a numeric vector
V19 a numeric vector
V20 a numeric vector
V21 a numeric vector
V22 a numeric vector
V23 a numeric vector
covsample

V24 a numeric vector
V25 a numeric vector
V26 a numeric vector
V27 a numeric vector
V28 a numeric vector
V29 a numeric vector
V30 a numeric vector
V31 a numeric vector
V32 a numeric vector
V33 a numeric vector
V34 a numeric vector
V35 a numeric vector
V36 a numeric vector
V37 a numeric vector
V38 a numeric vector
V39 a numeric vector
V40 a numeric vector
V41 a numeric vector
V42 a numeric vector
V43 a numeric vector
V44 a numeric vector
V45 a numeric vector
V46 a numeric vector
V47 a numeric vector
V48 a numeric vector
V49 a numeric vector
V50 a numeric vector
V51 a numeric vector
V52 a numeric vector
V53 a numeric vector
V54 a numeric vector
V55 a numeric vector

For details, see http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
Details

For detailed information on the UCI dataset, see http://kdd.ics.uci.edu/databases/covertype/covertype.data.html

Variables V1 to V54 are physical geographical variables. Variable V55 is cover type, one of types 1-7.

Note the omission of any information on geographical location. Distance through the data seems however to be, in part, a proxy for geographical location.

Source

http://kdd.ics.uci.edu/databases/covertype/covertype.html

References

Examples

data(covsample)
options(digits=3)
tab.sample <- table(covsample$V55)
tab.sample/sum(tab.sample)
rm(covsample)
data(covtrain)
tab.train <- table(covtrain$V55)
tab.train/sum(tab.train)
rm(covtrain)
data(covtest)
tab.test <- table(covtest$V55)
tab.test/sum(tab.test)
rm(covtest)

 covtest Sample of UCI Machine Learning Forest Cover Dataset

Description

Dataset used as test data in the study cited below. These are observations 11341 to 15120, out of 581012, in the dataset on the UCI site. Forest cover type is recorded, together with information on physical geographical variables that may account for the forest cover type.

Usage

data(covtest)
Format

A data frame with 11318 observations on the following 55 variables.

V1 a numeric vector
V2 a numeric vector
V3 a numeric vector
V4 a numeric vector
V5 a numeric vector
V6 a numeric vector
V7 a numeric vector
V8 a numeric vector
V9 a numeric vector
V10 a numeric vector
V11 a numeric vector
V12 a numeric vector
V13 a numeric vector
V14 a numeric vector
V15 a numeric vector
V16 a numeric vector
V17 a numeric vector
V18 a numeric vector
V19 a numeric vector
V20 a numeric vector
V21 a numeric vector
V22 a numeric vector
V23 a numeric vector
V24 a numeric vector
V25 a numeric vector
V26 a numeric vector
V27 a numeric vector
V28 a numeric vector
V29 a numeric vector
V30 a numeric vector
V31 a numeric vector
V32 a numeric vector
V33 a numeric vector
V34 a numeric vector
V35 a numeric vector
V36 a numeric vector
V37 a numeric vector
V38 a numeric vector
V39 a numeric vector
V40 a numeric vector
V41 a numeric vector
V42 a numeric vector
V43 a numeric vector
V44 a numeric vector
V45 a numeric vector
V46 a numeric vector
V47 a numeric vector
V48 a numeric vector
V49 a numeric vector
V50 a numeric vector
V51 a numeric vector
V52 a numeric vector
V53 a numeric vector
V54 a numeric vector
V55 a numeric vector

For details, see http://kdd.ics.uci.edu/databases/covertype/covertype.data.html

Details

For further details, see http://kdd.ics.uci.edu/databases/covertype/covertype.data.html. Note the omission of any information on geographical location. Distance through the data seems however to be, in part, a proxy for geographical location.

Source

http://kdd.ics.uci.edu/databases/covertype/covertype.html

References

Examples

data(covtest)
covtrain

Sample of UCI Machine Learning Forest Cover Dataset

Description

Dataset used as training data in the study cited below. These are the first 11,340 observations, out of 581012, in the dataset on the UCI site. Forest cover type is recorded, together with information on physical geographical variables that may account for the forest cover type.

Usage

data(covtrain)

Format

A data frame with 11318 observations on the following 55 variables.

- V1 a numeric vector
- V2 a numeric vector
- V3 a numeric vector
- V4 a numeric vector
- V5 a numeric vector
- V6 a numeric vector
- V7 a numeric vector
- V8 a numeric vector
- V9 a numeric vector
- V10 a numeric vector
- V11 a numeric vector
- V12 a numeric vector
- V13 a numeric vector
- V14 a numeric vector
- V15 a numeric vector
- V16 a numeric vector
- V17 a numeric vector
- V18 a numeric vector
- V19 a numeric vector
- V20 a numeric vector
- V21 a numeric vector
- V22 a numeric vector
- V23 a numeric vector
V24 a numeric vector
V25 a numeric vector
V26 a numeric vector
V27 a numeric vector
V28 a numeric vector
V29 a numeric vector
V30 a numeric vector
V31 a numeric vector
V32 a numeric vector
V33 a numeric vector
V34 a numeric vector
V35 a numeric vector
V36 a numeric vector
V37 a numeric vector
V38 a numeric vector
V39 a numeric vector
V40 a numeric vector
V41 a numeric vector
V42 a numeric vector
V43 a numeric vector
V44 a numeric vector
V45 a numeric vector
V46 a numeric vector
V47 a numeric vector
V48 a numeric vector
V49 a numeric vector
V50 a numeric vector
V51 a numeric vector
V52 a numeric vector
V53 a numeric vector
V54 a numeric vector
V55 a numeric vector

For details, see http://kdd.ics.uci.edu/databases/coverttype/coverttype.data.html

Details

For details, see http://kdd.ics.uci.edu/databases/coverttype/coverttype.data.html. Note the omission of any information on geographical location. Distance through the data seems however to be, in part, a proxy for geographical location.
Data frame for Lifespans of UK 1st class cricketers born prior to 1840.

Description
Year and birth, lifespan, etc, of British first class cricketers, born prior to 1840, whose handedness could be determined.

Usage
```r
data(earlycrcktr)
```

Format
A data frame with 211 observations on the following 8 variables.

- `left`: a factor with levels `right`, `left`
- `year`: numeric, year of birth
- `life`: numeric, lifespan
- `dead`: numeric (all 1 = dead)
- `acd`: numeric (0 = not accidental or not dead, 1 = accidental death)
- `kia`: numeric (all 0 = not killed in action)
- `inbed`: numeric (0 = did not die in bed, 1 = died in bed)
- `cause`: a factor with levels `alive`, `acd` (accidental death), `inbed` (died in bed)

Source
John Aggleton, Martin Bland. Data were collated as described in Aggleton et al.
References

See Also
cricketer.

Examples
data(earlycrcktr)

fishRivers

Characteristics of river reference sites

Description

Data on river sites was matched with data on fish caught at nearby fishing sites. Fishing sites were classified according to type of fish (Group = fish river type).

Usage
data(fishRivers)

Format

A data frame with 128 observations on the following 23 variables.

<table>
<thead>
<tr>
<th>Group</th>
<th>Fish river types; a factor with levels F1 F2 F3 F4 F5 F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alk</td>
<td>mgm/l of CaCO3</td>
</tr>
<tr>
<td>Avrain</td>
<td>mean annual rainfall, mm</td>
</tr>
<tr>
<td>Bedrock</td>
<td>% cover on river edge attached to substratum</td>
</tr>
<tr>
<td>Boulder</td>
<td>numeric, % cover of stones > 200mm diameter</td>
</tr>
<tr>
<td>Cobble</td>
<td>numeric, % cover of stones between 60 & 200mm</td>
</tr>
<tr>
<td>Cond</td>
<td>electrical conductivity ((\mu S/cm))</td>
</tr>
<tr>
<td>Dis</td>
<td>maximum distance from source (m)</td>
</tr>
<tr>
<td>Do</td>
<td>numeric, dissolved O2, % saturation</td>
</tr>
<tr>
<td>Elev</td>
<td>nearest contour line (m) below site</td>
</tr>
<tr>
<td>Fine</td>
<td>numeric, % cover of particles < 0.02mm</td>
</tr>
<tr>
<td>Gravel</td>
<td>numeric, % cover of particles between 2 & 20mm</td>
</tr>
<tr>
<td>Lat</td>
<td>latitude</td>
</tr>
</tbody>
</table>
Details

To what extent can the fish river type be predicted, based on: (i) all explanatory variables; (ii) the variables Avrain, Dis, Elev, Lat, Long and Slope. The second set comprises the variables that would be used in practice to predict the fish river type at other sites.

Source

Data relate to Turak and Koop (2007).

References

Examples

data(fishRivers)
library(MASS)
fish.lpa <- lpa(Group ~ Avrain + Dis + Elev + Lat + Long + Slope,
 data=fishRivers)

fumig

Profiles of fumigant concentration over time

Description

Fumigant concentrations are given at six times through a 120 minute fumigation, for seven different runs of the fumigation procedure.

Usage

fumig
Format
A data frame with 8 observations on the following 8 variables.

testnam a factor with levels Applied Test 1 Applied Test 2 Applied Test 3 Confirmation Test Query Applied Test 4 Applied Test 5 Applied Test 6
Cultivar a factor with levels Bogapple Chewton Pear (the names are invented)
xQ concentration (gm/cm3) at 5 minutes
xR concentration at 10 min
xS concentration at 30 min
xT concentration at 60 min
xU concentration at 90 min
xV concentration at 120 min

Details
Sortpion of fumigant by the fruit, different between different cultivars, is the main reason for the decline in concentration over time.

Source
John Maindonald

References
For s discussion of the technology, see:

Examples
data(Hfumig)

data(MaskedRepetitionPrimming)
MaskedPriming

Format

A data frame with 6381 correct responses to words on the following 10 variables.

- **subjects** a factor with levels 1 to 72
- **words** a factor with levels 1 to 192
- **e** the level of familiarity, a factor with levels 1 2 3
- **ct** a factor with levels HI HU LI LU. Here, HI = high freq, identical prime; HU = high freq, unrelated prime; LI = low, identical; LU = low, unrelated
- **f** the word frequency, a numeric vector with values -0.5 (High) and 0.5 (Low)
- **p** priming, a numeric vector with values -0.5 (Identical word) and 0.5 (Unrelated word)
- **rt** reaction time (milliseconds), a numeric vector
- **srt** reaction time (sec) = rt/1000, a numeric vector
- **lrt** loge(reaction time), a numeric vector
- **rrt** negative of speed of reaction = -1/srt, a numeric vector

Details

This combines the datasets from Bodner and Masson (1997, Exp 1 and Exp 2a) and Kinoshita (2006, Exp 2).

Source

Kliegl et al (2008)

References

Examples

```r
data(MaskedPriming)
str(MaskedPriming)
plot(MaskedPriming[sample(6381,100), 7:10])
## Not run:
library(lme4)
cmat <- matrix(c(-1, 1, 0,
        -1, -1, 2), 3, 2,
        dimnames=list(c("BM1", "BM2", "SK"),
                       c("BM1-2", "BM-SK")))
mo <- lmer(rtt ~ p*f*e + (1 | subjects) + (0 + p | subjects) +
            (0 + f | subjects) + (1 | words), contrasts=list(e=cmat),
            data=d)
```
m1p <- lmer(rrt ~ p*f*e + (p | subjects) + (0+f | subjects) + (1 | words), contrasts=list(e=cmat))
m2 <- lmer(rrt ~ p*f*e + (p + f | subjects) + (1 | words), contrasts=list(e=cmat), data=d)
anova(m0, m1p, m2)

End(Not run)

plotSampDist

Plot(s) of simulated sampling distributions

Description

Plots are based on the output from `simulateSampDist()`. By default, both density plots and normal probability plots are given, for a sample from the specified population and for samples of the relevant size(s).

Usage

```r
plotSampDist(sampvalues, graph = c("density", "qq"), cex = 0.925,
             titletext = "Empirical sampling distributions of the",
             popsamp=TRUE, ...)
```

Arguments

- **sampvalues**: Object output from `simulateSampDist()`
- **graph**: Either or both of "density" and "qq"
- **cex**: Character size parameter, relative to default
- **titletext**: Title for graph
- **popsample**: If TRUE show distribution of random sample from population
- **...**: Other graphics parameters

Value

Plots graph(s), as described above.

Author(s)

John Maindonald

References

See Also

See Also `help(simulateSampDist)`
Examples

```r
## By default, sample from normal population
simAvs <- simulateSampDist()
par(pty="s")
plotSampDist(simAvs)

## Sample from empirical distribution
simAvs <- simulateSampDist(rpop=rivers)
plotSampDist(simAvs)

## The function is currently defined as
function(sampvalues, graph=c("density", "qq"), cex=0.925, 
titletext="Empirical sampling distributions of the",
popsample=TRUE, ...){
  if(length(graph)==2)oldpar <- par(mfrow=c(1,2), mar=c(3.1,4.1,1.6,0.6), 
    mgp=c(2.5, 0.75, 0), oma=c(0,0,1.5,0), cex=cex)
  values <- sampvalues$values
  numINsamp <- sampvalues$numINsamp
  funtxt <- sampvalues$FUN
  nDists <- length(numINsamp)+1
  nfirst <- 2
  legitems <- paste("Size", numINsamp)
  if(popsample)(nfirst <- 1
    legitems <- c("Size 1", legitems)
  }
  if(match("density", graph)){
    popdens <- density(values[,1], ...)
    avdens <- vector("list", length=nDists)
    maxht <- max(poppdens$y)
    ## For each sample size specified in numINsamp, calculate mean
    ## (or other statistic specified by FUN) for numsamp samples
    for(j in nfirst:nDists){
      av <- values[, j]
      avdens[[j]] <- density(av, ...)
      maxht <- max(maxht, avdens[[j]]$y)
    }
  }
  if(length(graph)>0)
    for(graphtype in graph){
      if(graphtype="density"){
        if(popsample)
          plot(popdens, ylim=c(0, 1.2*maxht), type="l", yaxs="i",
            main="")
        else plot(avdens[[2]], type="n", ylim=c(0, 1.2*maxht),
          yaxs="i", main="")
        for(j in 2:nDists)lines(avdens[[j]], col=j)
        legend("topleft",
          legend=legitems,
          col=nfirst:nDists, lty=rep(1,nDists-nfirst+1), cex=cex)
      }
      if(graphtype="qq"){
        if(popsample) qqnorm(values[,1], main="")
        else qqnorm(values[,2], type="n")
    ```
for(j in 2:nDists){
 qqav <- qqnorm(values[, j], plot.it=FALSE)
 points(qqav, col=j, pch=j)
}
legend("topleft", legend=legitems,
 col=nfirst:nDists, pch=nfirst:nDists, cex=cex)
}
if(par()$oma[3]>0){
 outer <- TRUE
 line=0
} else {
 outer <- FALSE
 line <- 1.25
}
if(!is.null(titletext))
 mtext(side=3, line=line,
 paste(titletext, funtxt),
 cex=1.1, outer=outer)
if(length(graph)>1)par(oldpar)

simulateSampDist Simulated sampling distribution of mean or other statistic

Description

Simulates the sample distribution of the specified statistic, for samples of the size(s) specified in numINsamp. Additionally a with replacement) sample is drawn from the specified population.

Usage

simulateSampDist(rpop = rnorm, numsamp = 100, numINsamp = c(4, 16),
 FUN = mean, seed=NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpop</td>
<td>Either a function that generates random samples from the specified distribution, or a vector of values that define the population (i.e., an empirical distribution)</td>
</tr>
<tr>
<td>numsamp</td>
<td>Number of samples that should be taken. For close approximation of the asymptotic distribution (e.g., for the mean) this number should be large</td>
</tr>
<tr>
<td>numINsamp</td>
<td>Size(s) of each of the numsamp sample(s)</td>
</tr>
<tr>
<td>FUN</td>
<td>Function to calculate the statistic whose sampling distribution is to be simulated</td>
</tr>
<tr>
<td>seed</td>
<td>Optional seed for random number generation</td>
</tr>
</tbody>
</table>
simulateSampDist

Value

List, with elements `values`, `numINsamp` and `FUN`

- `values` Matrix, with dimensions `numsamp` by `numINsamp` + 1. The first column has a random with replacement sample from the population, while the remaining columns hold simulated values from sampling distributions with samples of the specified size(s)
- `numINsamp` Input value of `numINsamp`
- `numsamp` Input value of `numsamp`

Author(s)

John Maindonald

References

See Also

`help(plotSampDist)`

Examples

```
## By default, sample from normal population
simAvs <- simulateSampDist()
par(pty="s")
plotSampDist(simAvs)
## Sample from empirical distribution
simAvs <- simulateSampDist(rpop=rivers)
plotSampDist(simAvs)
```

```
## The function is currently defined as
function(rpop=rnorm, numsamp=100, numINsamp=c(4,16), FUN=mean, seed=NULL){
  if(!is.null(seed))set.seed(seed)
  funtxt <- deparse(substitute(FUN))
  nDists <- length(numINsamp)+1
  values <- matrix(0, nrow=numsamp, ncol=nDists)
  if(!is.function(rpop)) {
    x <- rpop
    rpop <- function(n)sample(x, n, replace=TRUE)
  }
  values[1,] <- rpop(numsamp)
  for(j in 2:nDists){
    n <- numINsamp[j-1]
    for(i in 1:numsamp)values[i, j] <- FUN(rpop(n))
  }
  colnames(values) <- paste("Size", c(1, numINsamp))
```
The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Monthly and annual SOI data, for the years 1876-2011, are given.

Usage
SOI

Format
This data frame contains the following columns:

- **Year**: a numeric vector
- **Jan**: average January SOI values for each year
- **Feb**: average February SOI values for each year
- **Mar**: average March SOI values for each year
- **Apr**: average April SOI values for each year
- **May**: average May SOI values for each year
- **Jun**: average June SOI values for each year
- **Jul**: average July SOI values for each year
- **Aug**: average August SOI values for each year
- **Sep**: average September SOI values for each year
- **Oct**: average October SOI values for each year
- **Nov**: average November SOI values for each year
- **Dec**: average December SOI values for each year
- **avsoi**: average annual SOI values

Source
Australian Bureau of Meteorology web pages:

References
Examples

```r
plot(ts(SOI[, "avsoi"], start=1900),
     panel=function(y,...)panel.smooth(1900:2008, y,...))
```
Index

*Topic datagen
 simulateSampDist, 18
*Topic datasets
 covsample, 4
covtest, 6
covtrain, 9
earlycrcktr, 11
fishRivers, 12
fumig, 13
MaskedPriming, 14
SOI, 20
*Topic distribution
 plotSampDist, 16
 simulateSampDist, 18
*Topic hplot
 plotSampDist, 16
*Topic multivariate
 compareModels, 2
*Topic package
 DAAGxtras-package, 2
*Topic statistics
 compareModels, 2
 covsample, 4
covtest, 6
covtrain, 9
DAAGxtras (DAAGxtras-package), 2
DAAGxtras-package, 2
earlycrcktr, 11
fishRivers, 12
fumig, 13
MaskedPriming, 14
plotSampDist, 16
simulateSampDist, 18
SOI, 20