CoOL: Causes of Outcome Learning
Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. medRxiv (2020) <doi:10.1101/2020.12.10.20225243>. The optional 'ggtree' package can be obtained through Bioconductor.
Version: |
1.0.3 |
Imports: |
Rcpp, data.table, pROC, graphics, mltools, stats, plyr, ggplot2, ClustGeo, wesanderson |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
ggtree, imager |
Published: |
2021-07-16 |
Author: |
Andreas Rieckmann [aut, cre],
Piotr Dworzynski [aut],
Leila Arras [ctb],
Claus Thorn Ekstrom [aut] |
Maintainer: |
Andreas Rieckmann <aric at sund.ku.dk> |
License: |
GPL-2 |
URL: |
https://bioconductor.org |
NeedsCompilation: |
yes |
Materials: |
README |
CRAN checks: |
CoOL results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=CoOL
to link to this page.